
The Software Magazine
Volume III, No. 4 (ISSN 0279-2575. USPS 597-830)September 1982

A Memoiry Resident FFloppy Disk Progriarn

I

TIM" III
The NomProgramming Approach to Data Base Management

Data Base Management
Data management packages were created to

save time and money in the development of software
solutions to information problems. Many have been
designed to accomplish just that, although most have
only the programmer in mind. Sure they would save
time in the long run, but what of the initial investment
in time and effort required to learn the new language?
What about the non-programmers in the world who
would like an easy yet powerful applications generator?
The solution is one of the most highly acclaimed soft'
ware packages of our time, T.I.M. III.

What is T.I.M.?
T.I.M. is Total Information Manage*

ment. Programmers love it due to its original solutions
to classic data management problems. Non'
programmers adore it since they can use it to achieve the
same results as with other more complicated
programming'like packages.

What Makes T.I.M. So Simple
to Use?

We at Innovative Software, Inc. designed
T.I.M. from day one with the end user in mind. Maybe
he is a programmer who doesn’t have time to learn a
new language. Or perhaps a neophyte who fears coding
pads and lines numbered by tens. We felt that a data
management package should be able to be used by
anyone from a systems analyst to a secretary. That’s why
T.I.M. takes a full menu-driven approach, uses multiple
HELP screens, and has a manual that sets a new stan-
dard in documentation.

Features of T.I.M.
T.I.M. has all of the features one has come to

expect from a data management package, as well as
many new ones. For example, a word processing interface
that allows you to merge information from a T.I.M. file
with letters or other documents created by a word pro'
cessor. Now you can automatically send personalized let'
ters to hundreds or thousands—quickly and easily.
T.I.M.’s Select command enables you to pull specific infor*
mation from a file. For example. “All customers who live
in a certain ZIP code, whose last name begins with the
letter A to L, whose balance due is less than $50.00.” A
sophisticated report generator and even a list generator are
also included.

How powerful is T.I.M.? With a maximum
record size of 2400 characters and the ability to keep up
to forty fields sorted properly at all times, T.I.M. is
powerful enough to handle just about any application.
T.I.M. can handle over 32,000 records per file, and two
files can be linked together for reports if your application
requires a many'to'One relationship. T.I.M. also includes
all of the same editing commands as your word pro'
cessor, thus making data entry and editing a snap. You
can also pull selected records from one file to place them
into another. Files may be restructured to add or sub'
tract fields and/or change field lengths or types.TI.M.
even has it’s own utility for backing up hard disks onto
floppies.

Where to Find T.I.M.
T.I.M. is available from Lifeboat

Associates. Or you may purchase from us direct
by calling 913/383'1089. Either way you will

have the finest data management

iutTSoftware prosramava“'-

The Manual
Many people believe that the manual is

just as important as the software itself a view that we
at Innovative Software, Inc. tend to share. The
manual for T.I.M. is divided into two sections, the
Reference section and the Primer. The Reference
section describes all of T.I.M.’s commands
and subcommands. This is done in
English, not in technical terms or in •
our own language. Even if you have |

never seen a computer before in your life, you’ll be
able to read and understand our manual immediately.
The second section is a primer which goes through
several examples for you, again in plain English.
These true*to4ife examples take the beginner by the
hand, and instructs him what to do and when. You
will be able to see for yourself that T.I.M.’s only limita-
tion is the imagination of the user.

Available for CP/M,* and
IBM PC DOS.**
CP/M version—*695. IBM PC version—*495.

Innovative Software, Inc.
9300 W. 110th Street, Suite 380
Overland Park, Kansas 66210 USA
913/3834089

TIM is a Trademark of Innovative Software, Inc.
*CP/M and MP/M are Trademarks of Digital Research
**Trademarks of IBM

REMEMBER:

FORGETS."NEVEI

MORE THAN JUST ANOTHER PRETTY MCE
Says who? Says ANSI.
Specifically, subcommittee X3B8 of the American

National Standards Institute (ANSI) says so. The fact
is all Elephant™ floppies meet or exceed the specs
required to meet or exceed all their standards.

But just who is "subcommittee X3B8" to issue such
pronouncements?

They're a group of people representing a large,
well-balanced cross section of disciplines—from
academia, government agencies, and the computer
industry. People from places like IBM, Hewlett-Packard,
3M, Lawrence Livermore Labs, The U.S. Department
of Defense, Honeywell and The Association of Com-
puter Programmers and Analysts. In short, it's a bunch
of high-caliber nitpickers whose mission, it seems, in
order to make better disks for consumers, is also to

make life miserable for everyone in the disk-making
business.

How? By gathering together periodically (often,
one suspects, under the full moon) to concoct more
and more rules to increase the quality of flexible
disks. Their most recent rule book runs over 20 single-
spaced pages—listing, and insisting upon— hundreds
upon hundreds of standards a disk must meet in
order to be blessed by ANSI. (And thereby be taken
seriously by people who take disks seriously.)

In fact, if you’d like a copy of this formidable docu-
ment, for free, just let us know and we’ll send you
one. Because once you know what it takes to make
an Elephant for ANSI . . .

We think you'll want us to make some Elephants
for you.

ELEPHANT. HEAVY DUTY DISKS.
For a free poster-size portrait of our powerful pachyderm, please write us.

Distributed Exclusively by Leading Edge Products, Inc., 225 Turnpike Street, Canton, Massachusetts 02021
Call: toll-free 1-800-343-6833; or in Massachusetts call collect (617) 828-8150. Telex 951-624.

?=—”EtellMEO
The Software Magazine

September 1982 Volume III, No. 4

Editor-in-Chief: Edward H. Currie
Editor: Jane Mellin
Circulation/Customer Service: Patricia Matthews

Sharon Petro
Design/Production: K. Gartner
Typographers: Harold Black

Carole Mayer

Director of Communications: Bonita E. Taylor
Data Processing: David N. Rosensaft

Lawrence Fishman
Accounting: Bryn Seaberry

Valerie Arthur
Kim Blanchard

Cover by K. Gartner

DEPARTMENTS

Opinion
6 Editorial Comments

Edward H. Currie
7 The Pipeline

Understanding terminal interfacing
requirements

Ann Rogers
13 Talking About You

Jane V. Mellin
42 Letters

Product Status Reports
45 New Products

47 New Versions

47 Bugs

47 Books

54 Version List

Miscellaneous
The CP/M® Users Group

28 Volume 84, Catalogue and Abstracts
20 Attention Dealers!

25 A Call For Manuscripts

Software Notes
26 INCLUDE In BASIC-80™

Bob Kowitt
36 A Query-Driven Erase Function

Thomas N. Hill

28 Notice

53 Last Chance

FEATURES

10 A Memory Resident Floppy Disk Program
Michael J. Karas

The concept of this new ADD-ON MODULE is to extend the normal capabilities of an
existing CP/M-80 BIOS, so that additional drivers can be included. This is effected through
moving the software module into RAM just below the COP where those additional drivers
are.

14 T.I.M.™, Part 2
Davis A. Foulger

This first database management system for the IBM PC is most suited to the novice user; it
will not be all things to everyone, but will give most a fairly powerful database.

21 A Review Of Pascal/Z™
James Gagne

Pascal/Z is one of the earliest implementations of Pascal for the CP/M-80 operating system.
This reviewer’s controversial opinions are answered in a reply from Pascal/Z’s authors.

29 A Preview of Supersoft’s Ada Compiler
Steve Patchen

Mr. Patchen has delivered a typically thoughtful and informative essay on this small subset
of the Department of Defense’s definition for Ada.

31 8080 Assembler Programming Tutorial: Subroutines, Part 4
Ward Christensen

This month’s tutorial deals with CP/M-80 disk input and output, including directory search,
making, opening, reading, writing, closing, and erasing files.

38 Z80™ Programming Tutorial, The Architectural Wonders of
the Z80

Kim West DeWindt
If you don’t know about some of the Z80’s internal quirks, some of your 8080 programs may
produce bizarre results, if they run at all. Join Kim DeWindt in “strange new world of the
Z80’s insides.”

. . .

t ‘TRADEMARKS:
Z-80: Zilog Corp.

MINIAC: Shai Microcomputers, Ltd.
Apple & Apple Pascal: Apple Computers.

The Incredible Text Printer: James Gagne.
IBM Personal Computer: International Business Machines Corp.

UCSD Pascal & UCSD p-System: Regents of the University of California.

Lifelines/The Software Magazine, September 19824

and ProsperGo FORTH

ANNOUNCING
THE FOX & GELLER

dBASE II
PROGRAM

GENERATOR!
QUICKCODE™

Now, without any programming, you
can create these in seconds:

* DATA ENTRY PROGRAMS
* DATA RETRIEVAL PROGRAMS
* DATA EDIT/ VALIDATION PROGRAMS
* MENUS
* dBASE FILES
INTRODUCING FOUR NEW DATA TYPES:

DATE • DOLLARS • TELEPHONE
• SOC. SEC. NO.

With QUICKCODE, you can have your program,
but you don’t have to write it. So, you can do
things like knocking out an entire accounting
system over the weekend! And QUICKCODE in-
cludes a powerful new version of our popular
QUICKSCREEN™ screen builder, so you will put
together screens and reports that’ll dazzle even
the most skeptical (you can even use Wordstar™
to set up your screen layouts).

you MUST SEE IT TO BELIEVE IT.
And is QUICKCODE EASY TO USE? You never
saw anything so easy. You don’t have to know
how to program. You don’t even have to answer a
lot of questions, because there aren’t any!

QUICKCODE $295
ALSO FROM FOX & GELLER

QUICKSCREEN
Microsoft BASIC version $149
CBASIC version 149
dBASE-lI version 149

dUTIL dBASE utility 75

Fox & Geller Associates
P.O. Box 1053

Teaneck, NJ 07666 (201) 837-0142
dBASE-lI TM Ashton-Tate

Wordstar TM Micropro Int’l

With Timin FORTH, the unusually fast, elegant and versatile superset of
FIG FORTH.
Lifeboat Associates offers this powerful, threaded, interpretive and struc-
tured language including a memory resident operating system, text editor,
assembler and debugger. This extended FORTH is also enhanced by:

a visual screen editor with string search and replace
CP/M-80 file format compatibility
many additional FORTH words
array handling (implemented in machine code)
FORTH assembler for 8080/Z80TM machine instructions
full floating-point capability

Use this complete interactive software development system to slash soft-
ware development time and shrink system memory requirements.
For more information about Timin FORTH or any of the other 200-1- soft-
ware packages available for use in professional, personal, and program-
ming environments under SB-80TM or other CP/M® -80 compatible
operating systems, IBM PC DOS, or MSTM-DOS (SB-86) contact:
Lifeboat Associates, 1651 Third Avenue, NY, NY 10028. (212) 860-0300.
TWX: 710-581-2524 (LBSOFT NYK); Telex: 640693 (LBSOFT NYK).
SB-80, SB-86, trademarks Lifeboat Associates
MS, trademark Microsoft, Inc.
Z80, trademark Zilog, Inc.
CP/M, registered trademark Digital Research, Inc.
Copyright©1982, by Lifeboat Associates

Copyright © 1982, by Lifelines Publishing Corporation. No
portion of this publication may be reproduced without the
written permission of the publisher. The single issue price is
$3.00 for copies sent to destinations in the U.S., Canada, or
Mexico. The single issue price for copies sent to all other
countries is $4.30. All checks should be made payable to
Lifelines Publishing Corporation. Foreign checks must be in
U.S. dollars, drawn on a U.S. bank; checks, money orders,
VISA, and MasterCard are acceptable. All orders must be
pre-paid. Please send all correspondence to the Publisher at
the below address.

Lifelines (ISSN 0279-2575, USPS 597-830) is published
monthly at a subscription price of $24 for twelve issues,
when destined for the U.S., Canada, or Mexico, $50 when
destined for any other country. Second-class postage paid
at New York, New York. POSTMASTER, please send
changes of address to Lifelines Publishing Corporation,
1651 Third Ave., New York, N.Y 10028.

Lifelines - TM Lifelines Publishing Corp.
The Software Magazine - TM Lifelines Publishing Corp.
SB-80, SB-86 - TMs Lifeboat Associates.
BASIC-80, MBASIC, MS, SoftCard, COBOL-80 - TMs Microsoft, Inc.
CB80, PL/l-80, SID-86, CP/M-86, Pascal MT+, MP/M - TMs, CP/M and CBASIC2
registered TM - Digital Research, Inc.
BASE II - TM AshtonTate.
MailMerge, WordStar - TMs MicroPro International Corp.
Pascal/Z - TM Ithaca Intersystems.
PMATE, PLINK-II - TMs Phoenix Software Associates, Ltd.
T.I.M. - TM Innovative Software, Inc.
Z80 - TM Zilog Corporation.
Program names are generally TMs of their authors or owners.
The CP/M Users Group is not affiliated with Digital Research, Inc.

5Lifelines/The Software Magazine, Volume III, Number 4

pinion _____________
Editorial Comments Edward H. Currie

h) Menu-driven programs are a
must, preferably with clear state-
ments of available options.

i) End users are quite likely to want
to access files created by a given ap-
plication program with other appli-
cations programs which may or
may not have a direct correlation to
the particular application which was
used to first create the files.

j) Wherever possible, s tandard
escape, control sequences, etc.
should be used to make it easy for
the end user to move from using one
application to another.

All of these tips really point to one cen-
tral fact: you must put yourself in the
end user's place and remember that he
or she is primarily interested in getting
from point A to point B (the task at
hand) in the speediest, most efficient,
most painless fashion possible. To
make a rather crude comparison, the
end user is no more interested in wad-
ing through incomprehensible docu-
mentation than you are in reading in-
structions on operating a household
gadget; like you, they just want to get
the job done.

Work on your attitude. If you discover
that you just can't approach your own
software in an objective way, find
someone who really is naive about
computers and software, maybe even
someone who typifies your "target au-
dience". Watch them use your product,
and learn to put yourself in the end
user's place.

Put considerable thought and effort in-
to those things which assure that the
first time user has the full benefit of
your best talents to insure that they
quickly and painlessly become conver-
sant with your application.

It should be like hang gliding — just lift
your feet and you're airborne, and if
you don't cause any problems you will
soar like a bird . . .

tions is careful definition of the prob-
lem, careful design of the solution (i.e.
the application package) and good exe-
cution. Important to all three of these
factors is your knowledge of the end
user.

As the microcomputer software market
matures, end users are rapidly coming
into focus; they are developing a pro-
file which should be kept in mind by
applications programmers and soft-
ware designers. Typically -

a) They don't/won't read detailed
documentation during initial stages
of learning to use an application
package; they are eager to get
started and don't see why their
screens can't be just as informative
as a manual.
b) They object strongly to "rude" (as
opposed to the famous "friendly")
i.e., abrupt, overly technical, mes-
sages which question their intellec-
tual integrity, worth or value as a
human being - can you blame them?
Don't insult your customers or talk
down to them.
c) They love reference cards which
summarize the control sequences,
etc. and offer enough information to
allow them to get started without
any other documentation. It's much
easier to cope with a few details at a
time, in a convenient format.
d) HELP files are very popular, par-
ticularly if they may be invoked at
any point in a program and do in
fact offer relevant information.

e) Demonstration programs, which
in fact serve as animated "cartoons"
illustrating all of the important
features of a program, are extremely
useful for sales promotion and train-
ing.
f) A few options are better than an
infinite number.
g) INSTALL programs with all the
standard terminals included should
be provided in cases where special
terminals require changes in the pro-
gram.

Software Publishing - A New Era

Many of you have written and asked
about the opportunities for publishing
the "intellectual properties", i.e., appli-
cation programs, which you have writ-
ten.

As a major software publisher, Lifeboat
Associates, like a book publisher, has a
standard procedure for submission of
"manuscripts". This procedure is de-
tailed in an excellent brochure known
as "Guidelines for Software Authors".
Those of you who ware interested in
obtaining a copy should contact the
New Products Department at Lifeboat
Associates.

Some of you have also wanted to know
exactly what kinds of programs are
most desirable to software publishers.
There are in fact two basic approaches
that an author may use to develop pro-
grams of interest.

First, programs which are extensions of
applications already available are use-
ful, provided that they are supported
by good documentation, reference
cards, demonstration programs, etc.
One interesting aspect of producing ap-
plications of this type is that a "living
specification" already exists in the pro-
gram that you have used as a proto-
type. This is not to suggest that authors
should engage in wholesale imitation
or copying of programs, but rather that
by studying carefully the programs
which are successful, you will have a
sound basis for determining what is
likely to gain widespread market ac-
ceptance. And you may find that the
weak points in an already-successful
package provide bases for improve-
ment in the software you are develop-
ing. If you are following a model in ap-
plications design, know your future
competition very well indeed. Don't
just follow your own judgment; read
software reviews and talk with people
you know - find out what they do and
don't like about the products already
out there.

The key to developing good applica-

Lifelines/The Software Magazine, September 19826

pinion
Pipeline Ann Rogers

Providing an example of on-board
memory capability, Zentec's Zephyr/
Zms-35 terminal includes 3920 bytes of
displayable RAM - enough to handle
two screens full of information, at 80
characters per line by 24 lines per
screen, plus one message line.

In addition to its transmission ability, a
terminal accepts information from a
computer over the same interface and
at the same rate for display on the CRT.
Indeed, a terminal's transmission, re-
ception and display capabilities usually
must work together in a typical sys-
tem's full-duplex single-character-
transmission mode. In this type of op-
eration, each character entered on the
terminal's keyboard is immediately
transmitted by the terminal to the host
computer, which in turn retransmits
the character back to the terminal for
display on the CRT. (Note that no
direct connection exists in this mode
between the terminal's keyboard and
display.) Although such single-charac-
ter-transmission techniques drastically
reduce terminal memory requirements,
the host computer must be involved in
processing each keystroke; thus, such
techniques are often described as in-
teractive. In contrast, terminal page
and batch modes permit simultaneous
transmission of one or more screens of
data at a time, allowing an operator to
review, edit and correct data entry
before commanding host-computer
time. (Such data transmission is, of
course, actually serial in most cases - it
typically takes place over an RS-232C
port - rather than parallel as implied by
the term "simultaneous." Nevertheless,
most terminal users' manuals employ
the term "simultaneous" to describe
any data transmissions taking place at
speeds dictated by the computer /termi-
nal-interface performance - typically
300 to 9600 baud - rather than by
human operator response.)

Available terminal configurations
range from dumb terminals, which
simply accept and transmit operator in-
puts and accept and display computer
outputs, to intelligent terminals, which
to some extent process operator inputs
and computer outputs via on-board
microprocessors - the Zentec Zephyr,

(continued next page)
7

Understanding terminal interfacing requirements facilitates
software- and hardware-design tasks

Ubiquitous throughout the data-pro-
cessing industry, terminals are used in
all CPU-based systems, whether at the
software- and hardware-development
stages, in the end-user system, or both.
Thus, software and hardware designers
must have a thorough understanding of
how their CPU-based equipment - be it
a host computer, process controller or
consumer-oriented intelligent home-
entertainment system - might interface
with various terminals. Although this
article cannot furnish descriptions of
the detailed interfacing aspects of all
available terminals (more comprehen-
sive information is included in the book
A Designer's Guide to CRT Terminals,
scheduled for publication during 1983
by Reston Publishing Company, Inc.,
Reston, VA), it illustrates, through
specific examples, typical capabilities
of representative terminals; the article
aims at helping the software designer
learn in general what to expect and
know what questions to ask of terminal
vendors. (In this article, the terminals
under consideration include standard
typewriter keyboards, a CRT display
and a standard electrical interface.)

Keep in mind, too, that interfacibility is
important whether or not a terminal is
envisioned in the end product. For even
if a product is to interface ultimately
with a simple ten-button custom key-
pad or a complex voice-input/output
module (rather than a standard CRT
terminal and a built-in QUERTY key-
board), a standard terminal probably
will be used to mimic the pushbutton
keypad or voice-I/O module early in
the design stage. Furthermore, such in-
terfacing ease can prove invaluable for
future software upgrades, in which the
ability to plug a product's RS-232 or
RS-449 interface into a software-
development system's intelligent ter-
minal can greatly simplify program
revision and testing. Moreover, when
products will interface with terminals
in the end-user system, a thorough
understanding of general interfacing
requirements,and knowledge of the dif-
ferences between the control require-
ments of various manufacturers' termi-

nal types, will do more than facilitate
selection of the optimal terminal for a
particular application; this knowledge
will also aid in modifying the equip-
ment to operate with terminals other
than the one selected as standard for
the product, so the seller can be more
responsive to customer requests for
compatibility with specific terminals.

This adaptability can take several
forms: it can require system modifica-
tion via PROM changeout, or it can be
nothing more than a customer flipping
a switch or changing a few jumpers, if
the ability to stock large quantitites of a
single unit adaptable to many different
terminals is important. In this case, a
higher price must be exchanged for
greater flexibility.

Before looking at methods of increas-
ing the adaptability of CPU-based pro-
ducts, consider a terminal's function
vis-a-vis a computer. A terminal basi-
cally accepts input one character at a
time, usually displaying this informa-
tion on a CRT. It then transmits this in-
formation over some standard inter-
face (usually RS-232C) to a computer,
either a character at a time, a line at a
time, or a screen or more at a time. Ter-
minals permitting transmission of more
than one character at a time require on-
board RAM storage sufficient to hold
the maximum batch-size of data; prac-
tically all terminals include enough
RAM for storage of at least one screen
of data, whether or not they're in-
tended for use in non-interactive ap-
plications. (Terminals without enough
on-board RAM to store the number of
characters that their screens can dis-
play can make use of an external CPU's
main memory, which must in such sit-
uations include a section for storing
displayed data. The terminal can then
access this data through such tech-
niques as direct memory access; the
cost is additional hardware complex-
ity, as well as increased microprocessor
overhead - instruction cycles dedicated
to display control rather than the main
data-processing task.

Lifelines/The Software Magazine, Volume III, Number 4

for example, includes an Intel 8085A
processor. Such terminals thus are able
to "help out" the host computer - they
support distributed-processing tasks.
Whatever the terminal type, however,
the software designer must be aware of
each terminal's setup and control fea-
tures and requirements to assure opti-
mum interfacing with computer equip-
ment. These aspects range from rear-
panel- and printed-circuit-board-
mounted switches that permit control
of various terminal functions, to re-
quirements for special remote-control
codes that permit computer control of
terminal operations.

Don't overlook the mode-control capa-
bilities of many terminals that let an
operator select terminal conditions via
the unit's keyboard. The terminal sec-
tion of Heath/Zenith's H/Z-89, for
example, lets an operator select such
functions as reverse video (ESCp),
return to normal video (ESCq), keypad
shifting (ESCt), in which shifted
(upper-case) characters can be entered
without pressing the shift key (in this
mode, the shift key is required to
generate lower-case characters), and
automatic line feed on receipt of a car-
riage return (EXCx9).

In addition to using such keyboard
commands, you can adapt main termi-
nal features to your application
through nothing more complicated
than the proper resetting of rear-panel-
or printed-circuit-board-mounted
switches, obviating the need for any
software modifications in your prod-
uct. Don't for example, automati-
cally include specific software routines
which allow for connection to termi-
nals furnishing only odd or even parity
checks - the various terminals that you
might reasonably expect your end
product to ultimately interface with
probably allow you to select either
scheme via switches, or indeed, they
might allow you to select mark or space
alternatives to the parity bit. (In the
former, the parity is always one, re-
gardless of the data; in the latter, the
parity bit is always zero.)

As an indication of the flexibility that
such simple switch selections can pro-
vide, consider, for example, the switch-
selectable functions of Applied Digital
Data Systems Inc.'s Regent 20 termi-
nal. The standard video presentation of
that unit is dark characters on a light
background, for which a rear-panel
switch designated Switch 1 is set at 0.

By setting that switch to 1, you can
reverse the presentation.

Switch 2 determines whether the key-
board operates in full- or half-duplex
mode. In the full-duplex mode, in
which Switch 2 is positioned at 0, the
keyboard simply acts as a code gene-
rator, sending data to the communica-
tion line. It is not directly connected to
the display electronics, al though
echoed data received via the communi-
cation line does go directly to the
display. Thus, for the operator to see
the data from the keyboard in the full-
duplex mode, the communication line
must echo each character, and the host
computer must operate in the interac-
tive mode previously discussed, pro-
cessing each character when entered by
the terminal operator. In the half-
duplex mode, with Switch 2 set at 0,
keyed data is displayed on the screen as
it is transmitted to the communication
line. Here, the host computer must still
process each character when entered
but does not echo characters to the
display.

Rear-panel Switches 3 and 4 select the
type of parity check employed by the
terminal - odd, even, marking or spac-
ing. If odd or even parity is chosen, the
terminal appends the appropriate par-
ity bit (bit 8, whose state is based on the
parity of the seven ASCII data bits) to
outgoing data. (For even parity, the
parity bit is set to make the total num-
ber of "1" bits in the byte under test [the
seven-bit ASCII character plus the par-
ity bit] an even number; the total num-
ber of "1" bits in the byte becomes an
odd number for odd parity.) The termi-
nal makes use of this feature to check
the parity of all incoming data. If the
unit's parity-check feature is enabled
(via printed-circuit-board-mounted
switches to be discussed later), an error
in incoming data causes an asterisk to
replace the defective character on the
screen. If, on the other hand, marking
or spacing parity is chosen, the parity
bit on outgoing data is always 1 or
always 0, respectively. In these modes,
enabling the parity-check function will
cause an asterisk to be displayed in-
stead of any character with the parity
bit in the wrong state - that is, whose
parity bit violates the "always 1" or
"always 0" rule. Although such error
detection is far from ideal - it can only
verify the integrity of the final bit,
which is, after all, not even part of the
data of interest - the appearance of an

asterisk can indicate severe line degra-
dation.

Switch 5 controls Auto Line Feed
mode; in position 1, it's enabled, in
position 0, disabled. When the Auto
Line Feed mode is selected, receipt of a
carriage-return code or depression of
the New Line key generates an internal
line feed within the terminal logic. A
carriage-return code thus, for example,
causes the display to scroll when the
cursor has reached the bottom line and
both Auto Line Feed and Auto Scroll
are enabled. Note that an internal line
feed is completed when the cursor ad-
vances beyond the end of a line. Such
capabilities eliminate the need for such
command combinations in host-com-
puter programs.

Baud-rate settings (110, 150, 300, 1200,
1800, 2400, 4800 or 9600 for the Regent
20) are also back-panel selectable on
the Regent 20; this adjustment is ac-
complished through Switches 6, 7 and
8. A baud rate of 300, for instance, is
chosen when Switches 6 and 8 are set at
0 and Switch 7 is at 1.

Users can also select Regent 20 param-
eters via switches on printed-circuit
cards. Parity check, for example, can
be enabled via Switch 2 of circuit-
board-mounted Switch Block A3.
When Switch 2 is on, the terminal indi-
cates detected parity errors on the CRT
as an asterisk. When the switch is off,
the terminal ignores those errors, and
data is displayed just as it is received,
regardless of how it was originally en-
tered or transmitted.

Display of the cursor is controlled by
Switch 3 of Switch Block A3 and
Switch 4 of Switch Block A5. When it's
on, the former causes the display of a
blinking cursor; in the off position, it
provides a steady cursor. Switch 4 of
Switch Block A5 determines whether
the cursor is a rectangular-block or un-
derline type.

When Switch 4 of Switch Block A3 is
off and the keyboard receives or gener-
ates the control code termed ESC,5, the
keyboard locks and remains locked un-
til the unlock command, ESC, 6, is
received or generated at the keyboard.
BREAK is the only key that can
transmit during keyboard lock. It will
not, however, unlock the keyboard.
When Switch 4 of Switch Block A3 is
on, receipt of an EOT code causes the

Lifelines/The Software Magazine, September 19828

keyboard to lock, and receipt of an
STX code, or depression of the BREAK
key, unlocks it.

To select among character sets, an op-
erator uses Switches 5, 6, 7 and 8 of
Switch Block A3. Switches 5, 6 and 7
determine selection of one of seven in-
ternational sets, and Switch 8 controls
choice of lower- and upper-case char-
acters. The Regent normally powers up
in upper-case/shift-to-lower mode.
Turning Switch 8 on, however, puts
the terminal in the lower-case /shift-to-
upper condition suited to such applica-
tions as word processing.

The final user-selectable function that
the Regent provides via printed-circuit
card switches is Auto Scroll mode.
When that mode is enabled, data
scrolls upward if the cursor is in line 24
(the bottom line) and if the display re-
ceives a Line Feed (CONTROL-J) code
or if one is generated from the key-
board. If the cursor is at the bottom line
and a CR is received, data will also
scroll, as it will when the NEW LINE
key is depressed and Auto Line Feed is
enabled. However, the display does
not scroll when the Auto Scroll option
is disabled. Instead, a command that
attempts to move the cursor down
from the bottom line (Cursor Down or
Line Feed) places the cursor in the top
line.

In addition to allowing control via key-
board commands and switch settings,
many terminals permit remote control
via a host computer. Zentec's Zephyr,
for example, includes 69 remote con-
trol codes that handle functions rang-
ing from keyboard locking to insertion
of data at the cursor position on the
unit's CRT. In such modes, the host
typically signals an upcoming remote
command via a lead-in code, usually an
ASCII character that the terminal
won't display; so you must be sure that
you need never display the lead-in
character required by any terminals
you select. The lead-in character is
usually the ASCII ESC character
(decimal 27, hexadecimal IB); hence
the remote-command codes are often
termed escape codes. Some terminals,
however, offer you a choice of lead-in
characters.

Representative of terminals permitting
remote control, Hazeltine's Executive
80 Model 20 allows switch selection of
an ASCII - (equivalent to a decimal 126
or hexadecimal 7E) or an ASCII ESC

(decimal 27, hexadecimal IB) as the
lead-in code. A valid command param-
eter must immediately follow the lead-
in code; otherwise, the lead-in code is
ignored. And not all remote commands
require the lead-in code, or the pres-
ence or absence of a lead-in code might
determine the remote command to be
executed.

the cursor one space to the right or, if
the cursor is already in the right-hand
column, to the left column of the next
line. Similarly, an ASCII BS (back
space) moves the cursor to the left one
space (without destroying any charac-
ters already entered) or, if it is in the left
column, to the right-hand column of
the preceding line.

The Model 20's back-space remote
command is illustrative of remote com-
mands not requiring lead-in codes. The
unit also furnishes an example of differ-
ent interpretation of remote-command
codes depending on the presence or
absence of a lead-in code. In its Auto
New Line mode, the Model 20 stores a
carriage return preceded by a lead-in
code; if the lead-in code is not present,
the terminal moves the cursor to the
beginning of the next line without stor-
ing the carriage-return character.

The remote-command features dis-
cussed so far represent only some of the
more common functions; other re-
mote-controllable features on Hazel-
tine's Model 20 range from selecting
double-width and double-height char-
acters or 132 character columns (rather
than the standard 80) to controlling the
unit's auxiliary-port parameters, in-
cluding baud rate. And Zentec's
Zephyr permits remote selection of
such functions as full- or half-duplex
transmission as well as character
replacement, insertion and deletion.
The key to successful design is knowing
that such functions are available and
how to use them. Indeed, the remote-
control codes can be as important a
design tool as your microprocessor's
instruction set. H

Among the more important functions
of remote-command control are screen
clearing and cursor positioning. Hazel-
tine's Model 20, for instance, clears its
screen (or an area determined by selec-
table roll-up limits) of characters and
attributes (such as high/low intensity
and forward/reverse video, which
are also controllable via remote com-
mands) and moves its cursor to the
home (upper left-hand comer as seen
by the operator) on receiving a lead-in
code followed by a decimal 28 (ASCII
FS, hex 1C). Similarly, a decimal 15
clears characters and attributes from
the cursor position to the end of the
cursor's line, and a decimal 24 clears
characters and attributes from the cur-
sor position to the end of the screen.
Should you wish to insert characters
rather than delete them, your host
system can furnish a lead-in code
followed by a decimal 26. This se-
quence moves down by one line all
lines from the line including the cursor
to the bottom of the screen; the bottom
line is lost.

Among other Model 20 remote com-
mands, a lead-in code followed by a
decimal 11 or 12 will move the cursor
down or up, respectively. A decimal 16
not preceded by a lead-in code moves

Lifelines/The Software Magazine, Volume III, Number 4 9

Feature

A Memory Resident
Floppy Disk Program ___________

Michael J. Karas

Several months ago Lifelines/ The Software Magazine pre-
sented my two part article series concerning "A Dynamic
BIOS Extension Technique" (January and February 1982); it
gave the reader a taste of how to extend the number of logical
disk drives connected to an already existing CP/M-80 sys-
tem. The technique set forth the means of extending the BIOS
capabilities with additional disk software drivers - at the ex-
pense of stealing some of the available TPA and leaving the
CCP resident. My experience has shown me that the tech-
nique given has a particularly valuable place in the CP/M-80
systems implementation business, and as such the "ADD-ON
MODULE" has been implemented in an amazing variety of
configurations from the initial type (presented in the article
series) of single density non-deblocking BIOS to 5 1/4 inch
Winchester Disk drives with deblocking in the BIOS. The
ADD-ON MODULE run time package, the .COM file, can
be even auto-loaded at CP/M-80 cold boot time to permit the
automatic startup of the additional disk drivers. (See the July
1982 Lifelines/The Software Magazine article by Kelly Smith
on auto-load techniques).

These additional implementations of ADD-ON MODULES
have uncovered a number of strange and unique problems.
These problems have been corrected and the new ADD-ON
MODULE format has been fully tested on at least five dis-
tinctly different computer hardware setups, each with a dif-
ferent CP/M-80 and BIOS implementation. Since the original
article series resulted in a great deal of reader interest, I feel
that the fully-fixed ADD-ON MODULE format should be
placed at the disposal of Lifelines/The Software Magazine
readers.

First a brief review of the ADD-ON MODULE scheme will be
given for the new readers and those of you whose old copies
don't make it to the book shelf before destruction. Next, the
problems with the original scheme will be discussed and the
approach taken to fix the problems shown. The complete
source code for a version of the extension technique with the
corrections included appears at the end of the article. You will
find that the code has an interesting new twist.

Memory Disk Drives

Or a systems programmer desires an assembly, link,
and load process to run 10 to 40 times faster than with a
typical floppy disk subsystem . . .

Or the S100 processor board manufacturer feels it justi-
fies the existence of a unique processor board with both
8-bit and 16-bit microprocessors on one board . . .

Or just possibly an S100 memory board manufacturer
found that concurrent support of a memory drive soft-
ware product with the board product did wonderful
things for memory board sales.

Whatever the reason, I wondered "How?", "How much
faster?", and "Could I do it?". This prompted the neat new
twist of an ADD-ON MODULE, one that would make a sys-
tem-to-system transportable memory drive demonstration
program to answer the above questions. Now in this article I
would like to share my findings about memory drives in con-
junction with the ADD-ON MODULE fixes discussed above.

The ADD-ON MODULE Philosophy

The concept of the ADD-ON MODULE is to extend the nor-
mal capabilities of an existing CP/M-80 BIOS so additional
drivers can be included for whatever type of hardware the
user wishes to add to his/her system. This is effected through
a tricky scheme of moving a software module into RAM (part
of the normal TPA) just below the CCP that contains the ad-
ditional disk drivers. Figure 1 shows the CP/M-80 system
memory map for a typical system both before and after an
ADD-ON MODULE is installed.

The movement of the code image to the space below the CCP
is handled in almost exactly the same way that Digital Re-
search made DDT, SID, or DESPOOL relocate themselves to
the space below the BDOS. In the case of the ADD-ON
MODULE, the relocated module modifies the jump address
at location 5 in RAM to point to the base of the ADD-ON
MODULE. This permits transient programs to know the size
of the available program and data area without fear of over-
writing the operating system.

Operational software within the ADD-ON MODULE con-
tains code to "drive" the new hardware in the user's system.
The drivers are BIOS level type in that the coding format,
interface conventions and functions are designed around the
normal CP/M-80 BIOS structure. Entry to the routines is per-
formed by having the ADD-ON MODULE trade out the nor-
mal BIOS Jump Vector Table with a new set of jumps that
point to within the ADD-ON MODULE. The ADD-ON
MODULE then checks BIOS entry point calls from either the
CP/M-80 BDOS or from direct BIOS calls within the tran-

It has recently become extremely stylish for microcomputer
hardware manufacturers to provide very high performance
emulations of floppy disk drives that use large banks of mem-
ory as the media. Typically the memory media are managed
by a special combination of hardware and/or software. Why
the trouble??? Don't ask me. Some possibilities are:

The fact that one popular CP/M-80 based word proces-
sor package can be loaded in less than 3 seconds with a
memory disk drive . . .

Lifelines/The Software Magazine, September 198210

relocatable files (.PRL type) which are compatible with
MP/M-80. After reviewing the LINK output format of a .PRL
file, I designed the previously described PRLMOVE program
to relocate the LINK output files. The command structure
below shows how to produce the .PRL file from the RMAC
output on Drive A: entitled RAMDISK.REL.

A>LINK RAMDISK[OP]<cr>

where [OP] directs LINK to generate the desired .PRL file.
The program PRLMOVE and the page relocatable RAM-
DISK.PRL must be combined into a single executable com-
mand file as follows:

sient program for functions to be performed by the ADD-ON
module. The functions to be done within the module are thus
handled locally, whereas all others are passed onto the nor-
mal BIOS. The ADD-ON MODULE keeps a copy of the pre-
viously swapped out BIOS Vector Table entries so that con-
trol can be transferred to the normal BIOS when necessary.

A unique feature of the ADD-ON MODULE is the ability to
have several different modules, each with a different func-
tion, all resident within stolen TPA space at the same time.
The code of the ADD-ON MODULE interrupts BDOS calls
from the modified jump at location 5 in page zero to check for
'already installed" so that the system user does not attempt to
install an ADD-MODULE more than once. Having an
"address" byte identifying a particular type of BIOS exten-
sion allows the TPA to contain several different types of
ADD-ON MODULES. Each one relocates itself below the
previous and modifies the TPA size pointer via the address at
locations 5, 6, and 7. Each additional ADD-ON MODULE
also swaps the BIOS Vector Table. The limit of the number of
modules is based upon the amount of TPA space available.

Further implementation details of the ADD-ON MODULE
philosophy may be gleaned from reading the previously ref-
erenced Lifelines article series or through detailed study of the
program listing at the end of this article. Note that the source
code for the relocation module that moves the ADD-ON
MODULE to its execution position is included as the first list-
ing within this article.

ADD-ON MODULE Construction

An ADD-ON MODULE is designed for use under single user
CP/M-80 2.2. The next several paragraphs, from the pre-
vious article, show the procedure to get a version up and
running.

The source file, being very similar to a BIOS for CP/M-80
2.2, requires the extension disk definitions to have disk para-
meter tables, check vectors and allocation vectors. In addi-
tion, a directory buffer must be allocated. An ADD-ON
MODULE generates the appropriate tables through the use of
the macro library DISKDEF.LIB provided by Digital Re-
search on the CP/M-80 2.2 distribution diskette. This macro
capability requires a macro assembler to properly process the
DISKDEF macros.

An additional implementation requirement is the availability
of the assembler output as a .REL file. The Digital Research
Relocating Macro Assembler RMAC is just the ticket to gen-
erate the appropriate .REL file and process the DISKDEF.LIB
macro includes. The command structure below shows how to
assemble an ADD-ON MODULE program like the RAM disk
demo listing at the end of the article. The source is assumed to
be on drive B: and the assembler output .REL desired to be
placed on A:. The print file is sent to the printer while genera-
tion of the symbol table is inhibited.

A > RMAC RAMDISK $AB RA PP SZ<cr>

The resulting .REL file has to be converted to a page relocat-
able format. After agonizing over the problem of easily mak-
ing a "BIT MAP", I found that the Digital Research Link pro-
gram distributed with RMAC and PL/I-80 can generate page

Lifelines/The Software Magazine, Volume III, Number 4

A>DDT<cr>
DDT Vers. 2.2
-IRAMDISK.PRL<cr>
-R < cr > < - Load of .PRL file to

RAM to address
0100H with code
image starting at
address 0200H

NEXT PC
nnmm 0000 < - Convert nn to

decimal and
remember value

-IPRLMOVE.HEX<cr>
-R < cr > < - Read PRLMOVE

program in over
the .PRL file at
load address of
0100H.

-GO < cr > < - Exit DDT to
CP/M-80

A > SAVE dd RAMDISK.COM < - Save dd pages of
memory to get
command file,
dd = converted nn
from above!

This results in the .COM command file necessary to make an
executable module out of the ADD-ON MODULE.

The New ADD-ON MODULE Changes

The latest ADD-ON MODULE scheme contains repairs and
features over and above the original version. This section will
briefly describe the problems with the original version and
discuss how they were fixed.

1) Warm boot override - the new version doesn't play
the dangerous game of changing the value of the
warm boot vector address at 1 & 2 in memory. Some
people have utilities that index to parameters in the
BIOS off this address. The warm boot override pre-
vented the normal "run-of-the-mill" Sysgen, Copy
and Format programs from running on a system. The
ADD-ON MODULE code now does not modify the
jump address at 1 & 2 and instead changes the target
address "in place" at the real warm boot vector just be-
low the normal BIOS.

(continued next page)
11

2) Latest fixes installed to allow two or more ADD-ON
MODULES to be present in memory at the same time
- the version in the article didn't function fully as ad-
vertised! This problem was related to the modification
of the address at 1 & 2 as discussed in the previous par-
agraph. Modification as in the original version made
the first installed ADD-ON MODULE transparent
and subsequently only the second installed would
alter the normal BIOS capabilities.

3) The new example given in this article uses sector de-
blocking for 256 byte host disk sectors. A neat feature
of the included example is the fact that it demonstrates
a RAM floppy disk drive within the host TPA
memory space.

4) The Warm boot override function now re-enters the
CCP by subtracting an offset from the value of the en-
try stack pointer and going back in at the start up "de-
feat auto-load" entry point at CCP + 3. This fixes a
major problem in the first single density scheme from
the first Lifelines article. It would blow up CCP many
times upon typing control C at the CCP command
level while an ADD-ON MODULE module is present.
The constant reentry to CCP, via the exit stack
pointer reference, without reload from the disk,
caused problems. Entering a command and then reus-
ing the CCP seems to set some internal flags that screw
up operation for subsequent CTL-C usage. The pre-
sent design of the ADD-ON MODULE with the
negative offset pointer calculation reentry to CCP re-
quires that the BDOS and CCP combination be gen-
uine (REAL) Digital Research CP/M-80 Ver 2.2 of
total length 01600H bytes. If your system uses a
modified BDOS or CP/M-80 system look-alike, then
the negative offset to the stack pointer will require a
different value. Also, for non-genuine CP/M-80
systems, if the CCP is a different size (not 0800H)
bytes, the program PRLMOVE will have to be
modified to set down the relocation load address
calculation by an amount equal to the difference in the
alien CCP size.

place the home routine in a passive mode. That is, clear the
flags like Digital Research says but don't perform a drive
restore. See that the driver for the read and write routines
never moves the heads out from under them. Implied seek at
the driver level may have some reflection on the problem too.

A RAM Disk ADD-ON MODULE

The new ADD-ON MODULE technique discussed within the
first portion of this article, and shown as a programming ex-
ample in listing #2, is an implementation that fits a very small
sized floppy disk drive into RAM at the top of the TPA. The
characteristics of this "drive" are set up via the DISKDEF
macro to be 256 byte host sectors, at eight physical sectors per
track. The total allocated space in IK byte groups is 20K on
10 "tracks". The "directory" contains space for 32 entries.

ADD-ON MODULE startup "formats" the whole RAM drive
to 0E5H data pattern so that the drives look empty. As
shown, the enclosed program should run on any standard
CP/M-80 2.2 system without modification, provided the sys-
tem has more than a 24K TPA with the CCP resident. A
larger amount of memory allows for more TPA to be still be
available after you install this ADD-ON MODULE.

Please note that this software is not presented as a practical
example of how to make a memory-based floppy disk for
your system. I put it out as a public domain "way" of seeing
how it can be done without modifying your existing system
BIOS and operating system implementation. The enclosed
software, if you desire, may very easily be set up to imple-
ment a practical RAM floppy in bank-switched memory. My
suggestions about the optimal hardware set up for this pur-
pose are:

1) Arrange to have the ADD-ON MODULE resident in
RAM above 32K (8000H) when it is relocated below
the CCP. A 56K system, or larger to 64K, should be
plenty large.

2) Place the bank-switched RAM at address OOH of your
8080/Z80 CPU so that it is switched in banks of 32K.
When access to the RAM drive is desired, make the
ADD-ON MODULE switch out the normal CP/M-80
lower 32K in favor of additional banks to contain the
"disk drive image".

3) Lastly, do not "format" all of the RAM memory
within the start-up of the ADD-ON MODULE. In-
stead, write a short utility program entitled "RAM-
FRMT" that does this function. This allows rebooting
your CP/M-80 system without loss of RAM disk data
in case the running program crashes.

Concluding Comments

Additional Information

I think you will find the new ADD-ON MODULE scheme in-
formative. The greatest area of difficulty I've had in checking
out deblocking type ADD-ON MODULES has been deciding
when to post the host buffer to disk with respect to operation
of the HOME routine. Digital Research's BDOS calls the
home routine each time the directory is to be updated. I found
during checkout of the latest ADD-ON MODULES, that the
last physical sector (256 bytes) of each 16K extent of a file
larger than 16K bytes would be written to track 0 sector 1 of
the logical unit and not to within the file allocation group as
expected.

Digital Research's CP/M-80 BIOS rules state an intent to
clear the host active flag on a HOME operation. Unfortu-
nately there seems to be an incompatibility between the tim-
ing and relative sequencing of posting, intended to achieve
writing the file sectors to the proper place on the disk. The
repair for the problem in my latest I/O routines has been to

I find ADD-ON MODULES to be quick, easy to debug, and a
reliable way of adding disk I/O for more drives to a CP/M-80
computer set up. If you have any additional thoughts or find
problems/solutions that I have not uncovered yet, please call
me so we can discuss them. I want the ADD-ON MODULE

(continued on page 48)

Lifelines /The Software Magazine, September 198212

C pinion ____________
Talking About You Jane V. Mellin

What About You?
For many months now I've been read-
ing your responses to the surveys we
mail out with renewal notices. The
most recent surveys are currently being
processed, and you'll hear about the
statistics as soon as they're available.
However, I've found that by reading
every survey I get a strong "gut" feeling
about you. Of course, the statistics can
only offer the coldest (though most ac-
curate!?) -portrait. Some of your con-
cerns and desires just won't appear in
the final, numerical analysis.
So I want to share a few of the major
trends I've detected. To begin with,
your responses show originality of ex-
pression and a real involvement with
the magazine and its goals. This is of
course what every editor hopes to find
in a readership - it indicates that Life-
lines/ The Software Magazine has stim-
ulated you and made you think.
Most of you look to Lifelines for objec-
tive, in-depth and comparative re-
views, and that's what you want con-
tinued. BASIC comparisons, screen
editor evaluations and data base man-
agement system reviews are among our
most popular review series. Currently,
we find that our new communications
series and our survey of applications
development tools are drawing your
letters and calls.
You might be interested in how our
"group" reviews develop. I'm referring
to those series where several authors
are involved in writing the reviews.
The process is a study in the coopera-
tive exchange of ideas. Generally, each
writer presents his or her input on the
form a review series should take. Dif-
ferent types of software have different
aspects and criteria for study; Lifelines
has certain broad categories for rating
products, but we find the four point,
four grade method to be a reductio ad
absurdum. So we go beyond the docu-
mentation, error handling, etc.) to
discuss the product's unique qualities:
its sophistication and flexibility (or the
users to whom the system is and isn't
suited), the tasks the software seems to

aim specifically at accomplishing and
how well it performs them.
In short, our reviewers first agree on
the spectrum of software a series will
address, then on the general areas of
performance relevant to that group of
products, and finally, the handling of
individual programs. We think the re-
sults reflect that objectivity you are
looking for, while going into some
depth. Our reviewers compare notes at
length on different products, adding a
scope of experience to our series.
Not surprisingly, you're making a
strong demand right now for more in-
formation about the new operating sys-
tems that have been growing up over-
night, like mushrooms. We're investi-
gating them for you, but bear in mind
that articles like Ron Fowler's essay on
TURBODOS, and Mike Karas' evalua-
tion of SB-80 require months of using
the system under review. What you get
at the end of this process is a clear idea
of exactly what you can expect from
these products.

Ward Christensen's tutorials have
brought a strong and vocal response:
praise, inquiries, suggested topics,
requests for more. Your letters and
survey comments have helped in the
planning of future tutorials, and Kim
DeWindt's new Z80 series is already be-
coming a star. These two authors are
experienced in teaching programmers;
they know which approaches are clear-
est to the novice and can anticipate
what some of your questions will be.
But they rely on you telling them what
topics should be covered.

Practical programming articles, like
those written by Kelly Smith and
Michael J. Karas, have stimulated a
hearty response from those among you
who find Lifelines/ The Software Mag-
azine to be an effective professional
aid. Dave Hardy's introduction to
typesetting interfaces was a sleeper; the
calls are still coming in.

In The Works
Some specific products we'll be review-
ing include: Electric Blackboard, Mr.

EDit, JANUS Ada, VolksWriter, Fast
Figure, ASCOM, Programmer's Ap-
prentice, EasyFiler, EasyWriter II,
LOGON, BASIC/Z, The Archivist,
RBTE-80, TERM2, Timin FORTH, and
many many more.

We've requested a lot of program de-
velopment tools and systems for re-
view, and we're anticipating a very tho-
rough survey and examination of these
products - covering every category,
from screen development utilities to
full-blown applications systems.

As you've noted, communications is
one of our primary concerns. Jim Mills
is going to tell you in detail how to set
up your own communications system.
He'll discuss your options in terms of
CPMUG software (see Volume 84, in
this issue), and investigate the various
levels of sophistication you can reach
in creating bulletin boards and net-
working systems. In addition, Allison
Phillips will offer tutorials which ex-
plain the basics of CPMUG* software,
including MODEM76.

One aspect of the communications rev-
olution is the "electronic cottage". Our
MicroMoneyMaker's column, which
will resume next month, promises to
encompass the "electronic cottage in-
dustry", a dream I think many of you
have. Charles Sherman came up with
the brilliant idea that we all should
share our ideas about this creative and
growing field. Of course, we're offering
prizes to encourage your responses, but
we feel that the whole endeavor can
only benefit all you micro wheeler
dealers. And some of you who aren't
entrepreneurs may have suggestions on
how the future captains of the elec-
tronic cottage industry can accommo-
date your needs.

In the coming months, I'll be talking
more about you. Correct me if I'm
wrong, and help me fill out this portrait
I've been painting. As I think you've
gathered, your calls, letters and survey
responses are our lifeline, our vital link.
Nobody will go unheard.

Lifelines/The Software Magazine, Volume III, Number 4 13

Feature

T.I.M., Part 2
Davis A. Foulger

terface while the range of the software
and its operation are enhanced. Unfor-
tunately, this is not exactly what hap-
pened with T.I.M.

While it is true that T.I.M. is both easy
to use and moderately versatile, the
package is troubled by three shortcom-
ings - slow operation, limited capacity,
and a deficient underlying model of the
data. Of the three, the slowness is most
likely to put off less experienced users.

"One Moment While The
Program Is Loading"

T.I.M. is written in Microsoft BASIC.
This fact enabled Innovative Software,
Inc. to bring out T.I.M. quickly after
the introduction of the IBM PC, which,
as it happens, offers users a good
Microsoft BASIC in the $40 disk oper-
ating system (PC DOS) that comes
standard with the computer. Since
T.I.M. was already implemented in
Microsoft BASIC for CP/M-80 ma-
chines, it was a rather simple matter to
adapt the package to the IBM PC.

Microsoft BASIC is a rather powerful
implementation, particularly in the ad-
vanced version available on the IBM
PC. It is convenient for applications de-
velopment, being interpreted rather
than compiled; the price of this ease of
use is in speed. No one would call
Microsoft BASIC a speed demon. True
to the language it is written in, T.I.M. is
a slow operating database system, par-
ticularly in the small, repetitive tasks
that really need to be speed-transparent
to the user. I read several books (in
pieces) while waiting for T.I.M. to per-
form various tasks, and although I am
a reasonably fast reader, those waits
were frustrating.

T.I.M. may be too slow for some prac-
tical applications, and the time it re-
quires could actually decrease produc-
tivity. It should, in general, excel in real
time "interview" applications, where
human give and take will tend to con-
strain the speed of data entry more than
the package does. It will be least satis-
factory in high-speed "transcription"

Because, moreover, it was the first data
base management software package
available on the IBM Personal Compu-
ter, it has sold more than a few copies to
IBM PC users who needed a database
management immediately. As a result,
T.I.M. has a good-sized owner base
among IBM PC users. Although there
are no doubt large numbers of T.I.M.
owners (both among IBM PC users and
CP/M-80 users) who still use the pack-
age, there are almost certainly those
who have moved on to more flexible
packages like dBASE II and Condor
(see the April, 1981 issue of Lifelines for
a review of Condor and the August,
1981 and May, 1982 for reviews of
dBASE II).

An Overview of T.I.M.

If my experience is any measure, T.I.M.
will first delight users, then disappoint
them, then make a comeback to re-
spectability. It will not be all things to
everyone, but will give most a fairly
powerful database.

In its heart of hearts, T.I.M. is a data-
base management system for novices.
It is designed for people who need a
moderately talented database system
and who have no desire to program.
Except for the installation procedure
that you must follow when you first
buy the package (yes, you will have to
read at least some of the manual) and
some advanced procedures that many
may never have cause to worry about,
everything in T.I.M. is menu-driven.
You just pop the diskettes in the right
drives and turn your machine on. After
that, T.I.M. does everything but make
your decisions and enter your data.

In this, the philosophy of T.I.M. is
pretty well in line with the new kind of
philosophy we can expect to proliferate
as advanced 16-bit supermicrocom-
puters like the IBM Personal Computer
become widespread. One of the best
uses of extended memory like that of
the Radio Shack Model 16 (500 Kbytes)
and the IBM PC (up to 1 Megabyte, de-
pending on the operating system) is the
improvement of the user /software in-

When new developments open fantas-
tic opportunities for introducing new
products (and, let's face it, getting rich
off the spoils) the rush to beat the pack
to market can carry both risks and re;
wards. The reward, if your product is
the first that satisfies a bona fide need,
can be instant recognition, market
leadership and lots of bucks. The risk is
that the product won't be fully enough
developed to take advantage of the new
technology.

Although there are arguments over
whether or not IBM really broke any
new ground with its Personal Compu-
ter, there seems to be little question
about the fact that it opened up great
opportunities for software developers.
With predictions of IBM PC sales in the
hundreds of thousands, the band-
wagon of software developers ready to
write or adapt software quickly grew to
overflowing. Today, with those predic-
tions fulfilled, software seems to be ap-
pearing for the PC at a fantastic rate.

There are, for instance, at least fifteen
word processing packages available for
the PC, many of which are completely
new and as yet unavailable on any
other computer. That number is in part
a reaction to the poor quality of the ini-
tial IBM PC word processing entry, a
cumbersome and difficult to use ver-
sion of Easywriter, but is also a reflec-
tion of the advanced features of the ma-
chine (see this month's review of Volks-
writer).

The developers of T.I.M. (Total Infor-
mation Management), a database man-
agement system, distinguished them-
selves in the race to bring new products
to the IBM Personal Computer market
in two ways, both of which were men-
tioned in the July Lifelines/ The Soft-
ware Magazine preliminary article on
the database package. As it was the
first business software package for the
IBM PC offered through a source other
than IBM's software central, it had an
excellent lead in arriving in Computer-
Land stores. Indeed, many customers
were able to obtain T.I.M. before they
could obtain the IBM-sponsored appli-
cations packages.

Lifelines/The Software Magazine, September 198214

when we have to worry about this kind
of many-to-many relationship between
child, family, address and birthday.

If things can get this complicated in just
building a mailing list to send birthday,
holiday and anniversary cards, im-
agine how complex they can get in
business applications, where buyers
make multiple purchases of different
kinds of merchandise and make multi-
ple payments; suppliers make multiple
shipments of different kinds of parts
and supplies from a variety of different
warehouses, and to a variety of differ-
ent facilities; employees with a variety
of different skills work in a variety of
different departments.

Advanced applications require a data-
base to draw relationships between a
variety of domains of differing objects
(family members, families, and the dif-
ferent groups that families are associ-
ated with, for instance). The true
power of a database system isn't real-
ized until the database can treat these
different domains of objects as com-
pletely separate and independent data
files (sometimes called relations). It is
generally conceded that there are three
well-formed models for dealing with
distinct, but related, domains of ob-
jects - the hierarchical, network and
relational models of data.

More Card Games:
Differences Among Models

Those who are gaining a full under-
standing of the differences between
these rather esoteric sounding models
are encouraged to read C. J. Date's An
Introduction to Database Systems
(1977; Addison-Wesley Publishing
Company, Reading, MA), an excellent
exploration of good database system
design. For now, let us briefly examine
the difference in these models by con-
sidering a deck of cards. Cards are con-
structed from two domains. The first,
which is called the suit, contains four
attributes: hearts, diamonds, clubs and
spades. The second, referred to as
ranks, contains thirteen attributes:
Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack,
Queen and King.

A card game like Go Fish uses only one
of these domains. Only the ranks of the
cards matter and an underlying data
model is unimportant. Go Fish is, of
course, a novice's game, just as T.LM.
is, for the most part, a novice's data
base

(continued next page)

applications - mail order data entry,
for instance - where it will tend to slow
the data entry process. The user can
solve this problem by writing a BASIC
program for data entry and then con-
verting the completed data file from
ASCII to T.LM.

The solution is a better data entry
routine, either in BASIC (even the
BASIC routine seems to be much
slower than it could be) or, preferably,
in assembly language. It currently
takes T.LM. between five and ten sec-
onds, depending on the complexity of
the data file and the screen, to draw a
new form for data to be entered on.
That wait is frustrating and, in the
opinion of this reviewer, unnecessary.

Although T.LM. is slow in other
places, that slowness can usually be
controlled with effective time manage-
ment. Sorts and other long-winded
utilities can be scheduled for lunch
hours, meetings, breaks and other busi-
ness that takes the user away from the
computer. Five and ten second inter-
ruptions in the data entry sequence, on
the other hand, can be difficult to
utilize.

Some Card Tricks: The
Underlying Data Model

A third limitation of T.LM. is found in
its underlying data model. While it is
true that a broad range of database ap-
plications (including almost any appli-
cation that might be required by many
users) can be implemented in a single
file, increasingly complex applications
stretch the abilities of the single file
database. Take, for example, a mailing
list of family and friends. The mailing
list is relatively simple so long as we
stick to simple relationships, like the
one-to-one relationship between a fam-
ily, its mailing address and the wedding
anniversary of the parents (useful when
sending out anniversary cards) or the
many-to-one relationships between
various families and their religious con-
victions (useful when sending out holi-
day cards).

Processing becomes more complex,
however, when we try to keep track of
the birthdays of the different members
of those various families (useful for
sending out birthday cards). Keeping
track of the one-to-many relationship
between individual family members,
their birthdays, and the address the
card should be sent to creates a prob-
lem. This problem can be solved by
creating several fields within each fam-
ily field for family member names and
their birthdays in the database record
of each family, but this solution creates
search problems (several fields must
now be searched for birthdays) and ul-
timately wastes field space within the
family record (particularly in families
of one that coexist in a database with a
family of twelve), a serious problem in
the limited field space of T.LM.

The problem can also be solved by cre-
ating a record for each family member.
This, however, creates other nuisances.
Even more space is wasted (a family of
twelve will have its address listed
twelve times in a single database).
Problems, moreover, can occur in
sending out the one-to-one relationship
cards. A family of twelve, for instance,
might wind up with twelve copies of
the same Christmas card, each ad-
dressed to a different family member,
but all sent to the same address. Such
problems grow even worse in divorce
cases where parents have joint custody.
Children, in these cases will be mem-
bers of two families, each with a difer-
ent address. The problems multiply

Forty Fields:
An Unbreakable "Record"

The overall capacity of the database
system also leaves something to be de-
sired, at least in advanced applications.
Although T.LM. is able to handle up to
32,767 records in each file, those rec-
ords are limited in size. Records are
limited to forty fields of up to sixty
characters each. Sixty characters are,
of course, sufficient to fill the width of a
page. This is, however, less than half
the maximum field length available in
many other data-base systems.

Field length is a small annoyance com-
pared with the limitation to forty fields
per data file. There may be very few
applications that will not fit within the
constraints of those forty fields, but al-
most any advanced user will have at
least one. Plainly, T.LM. will not do
everything some advanced users would
like a database package to do. How-
ever, the novice users most likely to en-
joy T.LM. will probably not find this
forty field restriction to be a problem.

Lifelines/The Software Magazine, Volume III, Number 4

Conditions change in a game like
Hearts, however. Here, one domain
(suit) clearly dominates the other
(rank). There is, if you will, a hierarchy
of domains in Hearts; ranks only mat-
ter to the extent that they fall within
particular suits. When databases are
organized this way, with the access to
family members provided only through
various families, the database is called
hierarchical. The biggest problem with
hierarchical databases is the same
problem you should have if cards were
always treated as hierarchical - you
wouldn't be able to play Go Fish or po-
ker, two games which have a decided
disregard for this kind of hierarchy of
domains.

An understanding of the network
model might be best understood by in-
troducing a third domain of objects,
card players, and a third game, Bridge.
In each hand of a game of Bridge, each
player is linked, by his or her cards, to
the domains of suits and ranks, and by
agreement, to another player. Once the
cards are dealt, players bid what they
think they can win, either within a
dominant suit, or with no dominant
suit.

Clearly, a hierarchical model won't do
for representing bridge or any similarly
complex database. None of these three
domains clearly dominate any of the
others (although suit still generally
dominates rank). The network model
gets around this problem by providing
for flexible links that can be changed at
will (with each shuffle of the cards).
There is a problem, however, with the
maintenance of those links in the face
of repeated change; repeated changes
are required in the complex range of
links associated with all the files (suits,
ranks, players), a time-consuming task.

A Touch of Reality:
The Relational Advantage

and a data file (for each hand) that
states the relationships between each
player and the deck of cards.

It may seen that these "relational" data
files add complexity, but appearances
deceive. These files actually reduce the
amount of storage needed for the entire
database (compared to a network
model) by eliminating the need to tag
each attribute of the suit, rank, and
data files with their links to the other
data files. They also speed up the pro-
cess of changing those links, as changes
need only be made to one file when
links change. Finally, the files increase
the flexibility with which we can use
the attributes of various domains.

If, for instance, we want to play a game
of Mate, a card game which only uses
twenty cards out of the standard deck,
we can easily set up a Mate data file (re-
lation) that specifies the twenty rela-
tions between suits and faces that exist
in the game and the characteristics of
each (in practice we simply remove the
cards from the deck and specify the
rules). Mate could, of course, be speci-
fied under a network model, although
the process would be much more com-
plex. Since, however, the rules of
hierarchy in Mate can turn upside
down with each play of the cards, it
would be impossible to specify ade-
quately under a hierarchical model.

Here we see the real value of the rela-
tional model, which most closely emu-
lates the way we operate in real life and
the way domains of information relate
to one another. We use a deck of cards
that relates suits to ranks (two data files
of attributes and information we keep
in our heads) instead of dealing a deck
of suits and a deck of ranks. Similarly,
we use a billing data file that relates
items sold (a data file) with the ad-
dresses of customers (another data file)
instead of sending out a mailing to all
customers, including those that have
no outstanding balances, informing
them that bills are ready and can be
picked up and paid. The relational
model is both simple and real. Thus,
almost any database suffers when it
does not adopt the relational model.

T.I.M.'s Underlying
Data Model

work model, the reporting characteris-
tics of a hierarchical model, and some
of the reformatting capability of a rela-
tional model - without really being any
of them. Two files can be related in
T.I.M.'s report procedure in a full
range of relationships (one-to-one,
one-to-many, many-to-one, many-to-
many), opening the door for the two
family and family member data files of
our greeting card example.

The suit and rank data files of our play-
ing card example might also be imple-
mented and related within T.I.M., but
it would be difficult to relate the player
data file with either in a flexible way. In
both the greeting card and playing card
examples, the implementation of the
files would follow what would seem to
be a network model, but the use of
those files would, although retaining
the flexibility of a network model, en-
tail hierarchical procedures. Oddly,
however, the reports produced could
easily be used to form a third "deck of
cards" data file. The new data file could
not, however, be used in the way it
would be used in a relational database.

A Tour Of T.I.M.

Now that we have examined the gen-
eral strengths and weaknesses of
T.I.M., it is time to look at the specifics
of the package. Many of these specifics
are outlined, in detail, in tables 1
through 3, and I will not touch on all of
them in this discussion. A user's tour of
T.I.M. begins with the user's manual,
which is a combination of reference
manual (fourteen blue tabbed sections)
and tutorial (four white tabbed sec-
tions). The documentation is quite
complete and fairly easy to read, but
clearly shows the rush with which the
IBM PC version of T.I.M. was brought
to market.

The manual seems little changed from
the CP/M-80 T.I.M. manual. Al-
though T.I.M. generally takes full ad-
vantage of the IBM PC's function keys,
these keys are never mentioned in the
manual in more than a footnote or two.
The keys are never shown in the man-
ual's tables. It is also clear that the
BASIC language statements printed in
the manuals appendix are the ones used
in the CP/M-80 version. When I en-
countered error messages (I don't think
that these errors represented bugs so
much as miscalculations), they almost
never had anything to do with the

A relational database system reduces
this complexity by building new data-
base files that lay out the relationships
between members of these various do-
mains. The relational database con-
tains more than the three data we have
discussed so far - a data file of suits and
their characteristics, a data file of ranks
and their characteristics, and a data file
of players and their characteristics. It
also contains a data file card explicitly
stating each of the relationships be-
tween members of the suit and rank,

The underlying model of the data in
T.I.M. seems confused. The software
seems to have the flexibility of a net-

16 Lifelines/The Software Magazine, September 1982

in the next release.

A fourth exit (X) command, which is
supposed to exit T.I.M. and return the
user to the SB-86 (MS-DOS, PC-DOS)
disk operating system also needs a fix.
It currently returns users to BASIC in-
stead of the DOS. The fix, however, is
as simple as ending the T.I.M. to DOS
command with a system command.

The remaining seven commands will
have to be described more carefully.
For now, it should be noted that that
four of these commands are data file
oriented commands and three of them
are output oriented commands.

Playing God: Creating A
New Data file

Software some needed mobility in up-
dating their product. In any case,
T.I.M. should almost certainly fit on a
single disk in the new IBM double sided
drives. It should be noted, however,
that although the multiple disk format
can be time-consuming and somewhat
annoying, it is not really a problem.
Disk changes are infrequent and tend to
be tied to even more time-consuming
tasks.

With the second T.I.M. disk placed in
drive A, we enter the create a new file
menu that includes four options. The
simplest of these options lets you create
a file that matches another file (an oper-
ation that can be particularly useful
when two data files will have duplicate
structures or when one is the subset of
another). When selected, this opera-
tion takes about thirty seconds to cre-
ate the duplicate file specification under
a new file name. Overall, the operation
is simple, powerful and convenient.

The operation would be handier if it in-
corporated format modification rou-
tines that allowed the user to delete un-
necessary fields from the old data for-
mat, add new ones, and otherwise re-
structure the "model" data file structure
in the copy. It is often the case that an
old data file is very similar to what is
needed in a new data file, but not ex-
actly the same. It doesn't seem like the
implementation and use of such an op-
tion would be terribly troublesome or
complicated at this stage.

A second option, implicit to the limita-
tions of the first, is the ability to create a
new data file format. Although one of
the more complicated operations in
T.I.M. from the standpoint of the num-
ber of decisions that a user has to make,
this option remains very user friendly,
with a full set of menus and prompts to
guide the user through the task of
building a data file structure. This op-
tion would profit from a display of the
fields that the user has already entered
(probably possible in two or three lines
of BASIC) and the ability to change the
order and structure of the fields in the
data file as it is being built. These two
features would make the use of the file
creation facility easier for novices who
will often fail to think far enough ahead
to plan a data structure before entering
the file creation facility.

A third option allows the user to spec-
ify a custom screen for forms entry. Use
of this facility is a good idea, as the

(continued next page)
17

BASIC language statements that sup-
posedly were being represented. (The
code was protected from listing and I
couldn't confirm this impression.)

Despite the manual's CP/M-80 under-
pinnings, it remains an excellent intro-
duction to, and reference for, T.I.M.
Many users will have very little use for
the manual, however, as the menus
which guide the user through every
step of the program are excellent. In-
deed, after reading Chapter 0 (Prelimi-
nary), which gives installation instruc-
tions and an overview of the package, I
used T.I.M. for about a week with little
need for the manual.

Out Of The Frying Pan
And Into The Fire

After reading over the menu for the
first time, a user might select the first of
several file oriented commands and at-
tempt to create a new file. Entering file
creation mode is a simple matter of
pressing the C key. But the plot quickly
thickens. In the IBM version of T.I.M.,
one discovers that all three T.I.M. disks
do indeed have a purpose. Here, the
program asks the user to insert T.I.M.
disk 2.

Written in BASIC, T.I.M. is a fairly
substantial and complicated program.
It requires about 295K bytes of disk
storage, far more than is provided on
the 5.25", single sided, double density
disk drives initially offered by IBM.
The capacity of these drives was con-
servatively set at about 160K bytes.

This capacity is generally conceded to
be the biggest mistake IBM made with
the machine, especially now that 5.25"
disk drives can be bought with capaci-
ties of half a megabyte and more. IBM
has recently moved to ease this prob-
lem somewhat with the introduction of
double-sided drives that double the
capacity of most disks, but the low end
capacity of the first drives has forced
software providers to adapt large soft-
ware packages to small disk capacities
as best they can.

Innovative Software's solution was to
repackage T.I.M. on three disks, with a
series of less-used utilities called in from
the second and third disks as needed. If
the packaging had been more carefully
planned, the job probably could have
been done with only two disks, but the
three disk format gives Innovative

With T.I.M. installed (a simple proce-
dure), the user only must put floppy
disks in the right places and turn the
machine on. The program moves
through several displays and one ques-
tion (where is the data?) before show-
ing the user its main menu. The main
menu is the center of all that happens in
T.I.M. The user is offered twelve op-
tions on this menu (which correspond
to twelve of the chapter headings in the
manual). One of these, the word pro-
cessing interface, wasn't operational in
my copy of T.I.M., an event which was
something of a disappointment to me.
The other eleven commands were all
intact, however.

These eleven commands can be broad-
ly grouped into three broad areas - file
oriented commands, output oriented
commands, and user oriented com-
mands. Three user oriented commands
allow the user to look at a directory of
the T.I.M. data files available on vari-
ous disks, examine the specifications of
the various files within that database,
and get help.

Of the three, only the help command,
which if used correctly gives the user a
capsule overview of the actions taken
by each of the twelve commands,
leaves anything to be desired. Simply
typing the indicated H command re-
sults in a message that says that Help is
not implemented, a rather misleading
remark. The user has to turn to the
manual to discover that help requires
two letters, an H followed by the com-
mand the user wants to know about. It
strikes this reviewer that the fix for this
problem is simple. It ought to be fixed

Lifelines/The Software Magazine, Volume III, Number 4

s tandard screens implemented in
T.LM. are somewhat painful to work
with. Unfortunately, the facility for
creating custom screens is also trouble-
some. In my notes I have described the
facility as showing "no thought given
to the keyboard" and "poor program-
ming". In truth, if I were Innovative
Software, I'd be embarrassed by this
one.

Why, for instance, are the Fl, F2, F3
and F4 function keys on the IBM key-
board used for cursor movement when
the keyboard already has a full set of
equally addressable cursor movement
keys? And why is the movement of the
cursor so slow? Microsoft BASIC is
slow, but you can certainly move the
cursor around faster than that. I could
go on, but the point is made. Some-
body didn't think when this part of the
program was revised for the IBM PC.

The custom screen also disappoints me
in its failure to allow users to put titles
and other relevant menu and prompt-
ing information on these custom
screens. The screens would be far more
useful if such provisions were made.

Data Entry and
File Modification

would speed it up tremendously, at
least on the IBM PC, but the speed in-
crement can certainly be obtained with
assembly language routines.

In the absence of such routines, some
users may want to write their own data
entry programs (or use VisiCalc, for in-
stance) and then take advantage of one
of the options available under the main
menu's utility commands listing. Speci-
fying these utilities results in a prompt
for T.I.M. disk 3. The utility in ques-
tion, which converts ASCII to T.LM.,
allows just about any ordered set of
data to be imported into a T.I.M. data
file.

Other utilities available under this
menu selection include a routine for
transferring T.I.M. files from one disk
to another (a program that must be
used in any such transfer operation), a
routine for transfer of information
from one T.I.M. data file to another (al-
lowing files to be restructured as needs
change), and a routine permitting large
files (on a Winchester hard disk, for in-
stance) to be cut up into a series of small
files (on floppy disks). This last opera-
tion can also be reversed, with a series
of small files built into a single large
one.

Another series of utilities (this set
stored on T.I.M. disk 2) is accessed
through the file maintenance option.
One set of routines provides for renam-
ing field titles or a T.I.M. file. Another
is for the erasure of key-fields, dupli-
cate or unwanted records, or entire
T.I.M. files. Another utility allows
data files to be sorted into a new se-
quence along a set of key-fields.

The availability of the utilities gives
T.I.M. a great deal of power in dealing
with a wide range of database manage-
ment problems. Many are rather slow,
however, especially when dealing with
large data sets, and should be sched-
uled judiciously at times (lunch hours,
breaks, meetings, etc.) where they
won't interfere with getting other work
done on the microcomputer.

Turning The Data File
To Good Use

provide a usable output.

The list generator, for instance, can be
used to produce mailing labels and, if
desired, bills or checks. The report gen-
erator turns out a summary of informa-
tion contain within the data bases, and
allows the totaling of fields across cases
with two levels of subtotals. The record
selection routine, moreover, lets the
user create a new data file that is a
subset of another, particularly useful
when billing customers or sending out
birthday greetings to friends and fami-
ly born in the same month.

These routines are not without lim-
itations. The records selector, for in-
stance, sorely misses a NOT operator to
join its reasonably decent range of se-
lection options. The report generator,
moreover, would probably be im-
proved by a better underlying data
model. And the list generator would
profit from the availability in the IBM
PC version (it appears to exist in the
CP/M-80 version) of a facility for up-
dating label formats stored in the list
generator's format library.

The biggest problem faced by these
routines is, however, the way such for-
mat libraries are implemented in all of
them. Each utility has an associated li-
brary of formats, established by the
user, that can be used over and over
again in similar applications. These lib-
raries are, unfortunately, located on
the T.I.M. program disks. It is unfortu-
nate because the IBM PC format ver-
sions of the T.I.M. disks are already
crowded. There really isn't any room
for much of a library. Users will quickly
find that they have run out of space.

The solution is to relocate these librar-
ies on the data disks in conjunction
with the appropriate data sets. It is dif-
ficult to tell how difficult that move
would be, but it should be fairly simple.

Summary and
Recommendations

With a file created and, perhaps, given
a custom screen, the user is faced with a
fourth menu item, exit, which takes the
user back to the main menu via a
prompted disk change. Now we can
start to put data into the our newly
specified data file and, hopefully, begin
using that data. Facing the main menu
once again, we are confronted with
three commands that will allow us to
turn our data file structure into a data
file.

The first of these is the Add/Inspect/
Update a record menu option. This
well-designed group of routines allows
the flexible entry, modification and up-
dating of data in the data file. Records
can be searched for strings (a name, for
instance), key-fields can be modified,
and the user generally has free move-
ment within the data file.

The routines are not without problems,
however. These problems, already dis-
cussed, involve the slow speed with
which screens are drawn for data entry.
One suspects that a revision of the
BASIC routines that draw the screens

T.I.M. is a reasonably powerful and
useful database system, distinguished
from other database systems mainly by
its ease of use. This ease of use is
achieved, however, at the price of a
good bit of the flexibility that advanced
users expect of database packages.
While T.I.M. can link two files for
some operations and is capable of a

The remaining three options have simi-
lar menus, reflecting their similar pur-
poses - list generation, report genera-
tion, and record selection. The general
purpose of each of these utilities is to

18 Lifelines/The Software Magazine, September 1982

advantage of them. It is hoped that a
future version will implement a new
and more clearly relational database
system, employing the extended ad-
dressing space of the IBM PC and other
supermicrocomputers to increase speed
and processing power, while maintain-
ing the high standards of user friendli-
ness and ease of use that distinguish
T.I.M. from its competition.

T.I.M. is recommended as a database
language for non-programmers and
undemanding applications. Its menu
driven structure and wide range of util-
ities give it power without sacrificing
ease of use. T.I.M. is not, however rec-

ommended for demanding applications
and users who don't mind getting their
hands a little dirty in learning how to
use a flexible database. These applica-
tions and users will find Condor or
dBASE II far more satisfying.

It should be noted, however, that
T.I.M. does give its users something of
a glimpse of the future, when large su-
permicrocomputer addressing spaces
will have resulted in very user friendly
application packages, consumer sales
will make for opportunities such that
software developers may be able to be-
come very rich off the spoils.

wide range of data sorts and restructur-
ings, it cannot easily be used for many
advanced database applications.

The package is also distinguished, un-
favorably, by its speed, which can be
frustrating and may lead to productiv-
ity declines in some applications. The
package stands to be significantly
improved here and elsewhere, and it is
hoped that its writers will take on the
task of making those improvements.

It should also be noted that although
T.I.M. is implemented on a machine
(the IBM PC) that has considerable ad-
vanced capabilities, it fails to take

TABLE 1
Facts & Figures

TABLE 1
Facts & Figures (cont.)

Package:
T.I.M. (Total Information Management) version 3.11

User Skill Level Required:
A novice should be able to master most of the
system in a matter of an hour or so without so much
as looking at much more than the preliminary infor-
mation in the manual (which is really only needed for
the backup diskette initialization procedures). Many
professionals would be better served by a faster or
more flexible package like dBASE II.

Price:
$495 for IBM PC ($695 for CP/M-80)

Systems Available For:
IBM Personal Computer, CP/M-80

Required Supporting Software:
Microsoft BASIC

System Upgrade Policy:
Upgrades, when available, will be issued at
unspecified prices.

Memory Requirements:
requires, and uses no more than, 56K RAM

TABLE 2
Qualitative Factors

Rating
Documentation

organization for learning 6
organization for reference 6
readability 5
includes all needed information 7

Ease of Use
initial start up 7
conversion of external data 4
application implementation 3
operator use 5

Error recovery
from input error 6
restart from interruption 4
from data media damage 5

Support
for initial start up 4
for system improvement 4

* Ratings in this table will be in a 1-7 scale where:
1 = clearly unacceptable for normal use
4 = good enough to serve for most situations
7 = excellent, powerful, or very easy depending

on the category

Diskette Capacity Required:
Two Disk Drives

Utility Programs Provided:
ASCII to TIM conversion
(Word Processor Interface)

Record Size & Type Limits:
Internal storage is fixed length ASCII stored as a
single record (no line feeds or carriage returns).

Up to forty fixed length fields of up to sixty characters
each can be stored in up to 32,767 records per file.

External data can be produced by the list and report
utilities with record lengths of up to 131 characters
(delimited by line feeds and carriage returns). Multi-
ple lines can be produced for each record. Variable
length external data can be converted to TIM if fields
are delimited by commas.

Ed. Note:
Innovative Software has just announced a compiled version
of T.I.M. to be released shortly in 8086 code for the IBM PC
(and hopefully soon thereafter in 8080 code for CP/M-80 ma-
chines). The run-time improvement is claimed to be in the
range of 10-40 times faster.

It is not immediately clear which, if any, of the other issues
raised in this review are resolved in the new version.
Lifelines/The Software Magazine, Volume III, Number 4

(continued next page)
19

TABLE 3
Data Management Capabilities

TABLE 3
Data Management Capabilities (cont.)

A. Underlying Data Model
1. Data Types

Alphanumeric (including special inverted name
fields and data fields), Numeric (up to four
decimal places with special dollar and sequen-
tial fields), and Calculated (including totals).

2. Relationships
There doesn’t seem to be any clear model
underlying the data. The reports feature does,
however, support a full range of relationships -
one to one, one to many, many to one, many to
many - between any two related files.

3.a. Data selection by predicate:
Eight relational operators give users a rela-
tively strong data selection capability. “And"
and “or” operations are supported, but “not”
operations are not.

b. Data Joining and Relating Multiple Data Sets:
Up to two data sets can be related in the report
procedure. Data joining will require effort and
planning, but can be done within the package.

c. Calculations on Data:
Different fields can be totaled and built into
new fields through standard calculations
(+ ,-,*,/) within records. Totals and two levels
of subtotal are suppor ted in the report
generator.

B. Functions Provided
1.a. Data dictionary maintenance:

There is no central data dictionary and data is
not file independent. Naming is file dependent.
Names can, however, bechanged, and where
fields match is length and domain, two files
can be linked in report specifications.

b. Data reorganization and conversion:
Data can be converted into TIM from ASCII us-
ing a conversion utility. Lists and reports can,
moreover, be written to disk for use by other
programs. Short files with common formats
can be concatenated into longer ones. Long
files (stored on a Winchester hard disk, per-
haps) can be split into smaller ones (e.g. - for
storing a floppy disk backup of a long Win-
chester hard disk file). Filescan be completely
restructured with fields added and deleted,
fields from two or more files combined into a
new file (this requires some care), duplicate
and deleted records removed, and files sorted
on key fields.

4.a. Data Independent Application Interface:
None. The menu promises a word processing
interface in future releases, however.

Attention Dealers!

There are a lot of reasons why you
should be carrying Lifelines/The
Software Magazine in your store. To
provide the fullest possible service to
your customers, you must make this
unique publication available. It will
keep them up to date on the changing
world of software: on updates, new
products, and techniques that will
help them use the packages you sell.
Lifelines can back up the guidance
you give your customers, with solid
facts on the capabilities of different
products and their suitability to a
variety of situations. Now we can
also offer you an index of all back
issues of Lifelines, opening up a full
library of information for you and
your customers.

For information on our dealer pack-
age, call (212) 722-1700, or write to
Lifelines Dealer Dept., 1651 Third
Ave., New York, N.Y. 10028.

2.a. Data Entry and Editing:
Users can specify custom screen formats of
up to two pages to match forms. Custom
screen generation procedures are counter-in-
tuitive and slow, however. Records are easily
updated with simple error recovery and data
modification procedures. Data entry can be
unbearably slow, however, as it takes several
seconds (4.6 with 5 fields; 6.8 seconds with 12
fields) for each screen (record) to be called up
and drawn.

b. Report Generation:
Reports can be generated using up to two files
(main and detail). Subtotals can be computed
with two breakpoints. Grand totals are also
computed. Reports can be written to either
print or disk, providing a means for generating
sub-total data for movement into new data
files.

Lifelines/The Software Magazine, September 198220

Feature

A Review of Pascal/Z
James Gagne

I finally got UCSD Pascal running a year or so later.
CP/M-80 sure beat trying to load programs from a cassette
tape recorder, and I became a reasonably competent Z80 as-
sembly language programmer and a fan of the Electric Pencil.
But eventually, UCSD Pascal won out.

I love the UCSD system because it is so fast and easy to use; in
contrast, CP/M-80 seems klutzy. Pascal is appealing because
of its clarity and elegance, and because of the ease with which
software tools can be built and maintained. I began one of the
first users' libraries for UCSD Pascal and am now chairman
of the Software Library of the UCSD p-System Users' Soci-
ety. Several of the software tools I wrote and then donated to
that library have been incorporated into The Incredible Text
Printer, a 12,000-line text formatting program that runs on
the p-System and combines power with clarity of operation
and ease of use. (Editor's Note: See last month's brief under
New Products.)

Pascal excels at complex programming tasks that involve the
manipulation of information (as opposed to number crunch-
ing or hardware-dedicated tasks), particularly when your
program is large and you would like program and data flow
to be orderly and well structured. It is one of the better stan-
dardized languages available for microprocessors, so that a
well-written program will port easily from system to system.
Because the majority of Pascal programs today are written
with the UCSD system, the extensions to the language cre-
ated by UCSD Pascal have formed a quasi-standard which is
likely to be in force until some more official set of extensions
is created by international agreement. Thus, as a reviewer, I
expect a Pascal compiler to support the creation or modifica-
tion of large programs that may have originally been devel-
oped on the UCSD system, once the obvious changes have
been made to accommodate the new operating system.

One of my most important review criteria is how much the
programming system improves my productivity. Unfortu-
nately, this position is not widely shared. One computer
company executive (whose programmers all use assembly
language) told me, "I really don't care how easy it is for my
programmers to program; that's their job. What counts is the
ease of use of the end product." I disagree. Programming re-
sources must be carefully respected.

There is an inherent limit to the number of programmers who
can work together effectively to complete a project. (Imagine
hiring thirty composers to help you write a symphony faster.)
If you have an especially large undertaking, requiring several
programmers, each should have a well-defined portion of it
which is uniquely his/hers.

It typically takes from one to four years to write a serious,
commercial-grade program. From my experience with the
UCSD Pascal community, programmers using high-produc-
tivity development systems don't just do the same old thing in

Pascal/Z is one of the earliest implementations of Pascal for
the CP/M-80 operating system. First released in 1978, it is
now in version 4 and has been used to implement itself for
some time. In this review, I will evaluate the features and per-
formance of Pascal/Z and compare it with the other two ma-
jor CP/M-80 implementations, Pascal /M and Pascal /MT +
(particularly Pascal /MT +).

I was invited to review Pascal/Z in response to an earlier re-
view of Pascal/MT + (Lifelines, November, 1981). In that ar-
ticle I noted that although MT + was an ambitious undertak-
ing, it had a number of problems. With a one-line program, it
took two minutes to go from editor to then compile, link,
run, and return to the editor, versus 15 seconds for the same
program running under UCSD Pascal on the same computer
(Version II.0; compare with 35 seconds for Apple Pascal and
about a minute for Pascal/M). I was not impressed with
MT + 's ease of use or suitability for the development of large
programs. Error messages were clear but untimely. To dis-
cover many of your problems you had to wait through a
three-pass compile, with a basic compile speed of about 200
lines per minute in addition to a 60-second fixed overhead.
(All times are from my Z80-based S-100 system which uses
double-density, single-sided, 8-inch disks.)

The MT + compiler is heavily laced with features, particu-
larly those supporting: a) 99% of the ANSI standard, b) a
high degree of compatibility with UCSD Pascal syntax, and
c) anything you'd need in order to do bit diddling and other
low-level programming. MT + features an optional Speed-
Programming Package that sounds wonderful but was in fact
not particularly fast or useful .

Ithaca InterSystems responded to this review, extolling the
advantages of Pascal/Z, with an invitation to review it and
their assurance that I would like it a lot better than MT + . To
support their claim, they included reports of benchmarks,
which showed that for the programs used, Pascal/Z created
generally smaller code files than MT -I- and ran them more
quickly (with both compilers set up to generate the quickest
code). It was noted that Pascal/Z code was fully re-entrant,
which MT+ was not. (I did not attempt to verify these
claims.)

During the twenty hours I spent reviewing Pascal/Z, I be-
came disenchanted because of a number of real problems
with Pascal/Z; these greatly limit its usefulness for the com-
mercial or contract programmer. But Pascal/Z is not a total
loss. If you are willing to put up with its poor user interface
and other idiosyncrasies, it is possible to write substantial
programs.

Reviewer Biases

I started out with CP/M-80 when I added a floppy disk sys-
tem to my IMSAI in 1977 and used CP/M-80 extensively until

(continued next page)
21Lifelines/The Software Magazine, Volume III, Number 4

Pascal/Z would be a lot faster during development if there
were a way to disable the listing file or the assembly-language
output. Alas, you must always send them somewhere, either
to a disk or to the console or printer. (One way to turn off the
listing is to use the $L- directive within the program source,
which allows only error lines to go to the listing. It was not
mentioned in the documentation, but if you put the $L- direc-
tive before the "PROGRAM <name>;" declaration, it is
ignored.)

There were more problems. The console display during com-
pilation consists of each procedure name followed by one
hyphen every ten lines or so. If an error is found during a
ten-line section, an "E" appears instead. There is no way to de-
termine where an error has occurred during compilation
without looking at the program listing (although you may
direct the listing to the console and try to spot the bugs as lines
go whizzing by). Even in the program listing, errors are
marked with an uparrow under the offending symbol and the
standard Jensen and Wirth error number, without further ex-
planation. There is no way to disable the compilation when
an error is encountered; you can't even turn off the assem-
bly language or listing outputs. Heaven help you if you make
a major goof (maybe a BEGIN without an end or an un-
matched parenthesis) and have to watch helplessly as error
message after error message was sent to the listing file and the
program continued to crank out listing and assembly garbage.

My 800-line program ran reasonably well under UCSD Pas-
cal and under MT + . However, an extensive effort was re-
quired to modify the program to fit in the MT + compiler and
linker. In contrast, the program compiled and linked almost
immediately with Pascal/Z. Alas, when it came time to try it
out, there were a succession of value range errors. Oops . . . if
you don't set the $E compiler option in your source (extend-
ing the size of the resulting file slightly), you get the notice of
the value range error without any hint of where it occurred in
the program. You also need a listing, containing "statement
numbers", or the count from the beginning of the program of
Pascal statements that are code-producing rather than declar-
ations . . . a handy reference so long as you have a current list-
ing. (Changing around a few lines and then recompiling re-
quires a new listing if you're going to find out where you are,
since the line count is global.) Procedure names or numbers
would be soooo nice!

However, once I found where the problem lay, from a review
of the source it appeared impossible that the program error
should have occurred. I made sure my loop variables were lo-
cal and removed some set comparisons (" . . . IF i IN [1, 3 . . 5]
THEN . . . "), only to fall through to the next error after
another round of compile-assemble-link 14 minutes later.
Arrghh!

I tried adding the debugger to the code (which requires
another 14-minute compile-assemble-link), only to discover
that it wouldn't fit in memory with the linker. As it says in the
manual under the discussion of "CODE OVERWRITES
TABLES", the error message I received: 'You lose. This is a
fatal error."

I never did get my program to run.

Just for fun, I tried the peephole optimizer on my 800-line
program to see what it would do. Nearly six minutes later, it

less time. They produce a much more refined product in the
same one to four years. So if you want your product to be
alive in two or three years, you'd better make the most of
your time. And here is where the majority of the CP/M-80-
based products fall apart, including Pascal/Z. Pascal/M is
the only one of them that truly helps you out, and it's still too
slow.

An Overview of Pascal/Z

The Pascal/Z system consists of a compiler, relocating mac-
roassembler, and linker, along with a debugger you can link
in, a separate peep-hole optimizer (in case you want to go
over your code once again), and complete source text to the
machine-language run-time library. There is a utility (which
works!) to convert from UCSD-format disks to CP/M-80 for-
mat, as well as an impressive collection of demo programs.

Pascal/Z is unique among CP/M-80 implementations, be-
cause its one-pass, recursive-descent compiler produces
'TDL"-like assembly language (i.e., Z80 mnemonics that use
extensions of 8080 mnemonics rather than those of Zilog).
The resulting text file is then assembled, along with an outer
shell common to all Pascal programs (common initialization
code, constants, etc.). Finally, the relocatable machine lan-
guage is linked together with the needed routines from the
run-time library.

(In contrast, MT + produces native machine code directly,
creating several temporary intermediate files on the disk dur-
ing its three passes. Pascal/M produces p-code directly in one
pass, requiring no intermediate steps; but there is consider-
able overhead in then interpreting the p-code at run time.)

One would think that it would be an incredible nuisance to
have to assemble something you've compiled in order to link
and run it. But actually, the compiler is reasonably quick, and
you can find about all your errors in one pass. You can think
of the assembler as the second and third pass of the compiler.
It almost works that way. . .

With a 56K CP/M-80 system, I needed the smaller, overlay
version of the Pascal/Z compiler, which fits in a 48K TPA but
runs half as fast as the 56K version. Its fixed overhead (i.e.,
with a one-line program) on my system was 24 seconds, al-
most all of it manipulating disks. Time to compile a 800-line
program was 5 minutes, working out to about 160 lines per
minute. There is reason to believe that this time would be
considerably reduced if something smaller than an assembly-
language file were produced: the product of the 800-line pro-
gram was a text file occupying 84K of disk!

As you might imagine, the 2-pass assembler took a while to
digest this file, which was assembled together with the
lOK-long program shell routines called MAIN.SRC. Assem-
bly time was six minutes, fourteen seconds. Add linking and
the total time from Pascal source to ready-to-run machine
language was 14 minutes.

Not exactly high productivity, considering the modest size of
the source file (800 lines, roughly 30K bytes). But since there
was so much disk access, and floppy disks are slow, this time
might be three to five minutes with a hard disk.

Lifelines /The Software Magazine, September 198222

IORESULT or other predeclared variable, NOTHING! For-
get about serious applications programming, unless you're
willing to dig around in the run-time library (full source is in-
cluded) and create the fix.

There are useful two I/O features worth mentioning. At your
option, whenever the user enters a Control-C, the program
will abort and return to CP/M-80 (compare with Pascal/M,
where if you're using the debugger, Control-\ restores con-
trol to the debugger, no matter what is happening, and tells
you where you just were). Also, Pascal/Z is the only major
microcomputer Pascal that prints out "TRUE" and "FALSE"
when you go to writing boolean variables. In fact, at your op-
tion you can extend this ability to read and write directly any
enumerated variable. Reading is totally case insensitive; writ-
ing always produces upper case.

You can chain from one Pascal/Z program to another (but
not to other CP/M-80 programs); you must link the chain
routines into both programs before running.

Complex boolean expressions are evaluated only so far as
necessary for them to be satisfied. So, if you say "A or B" and
A is true, B is not even looked at, since its value is irrelevant
to the outcome. Similarly, if your statement is "A and B" and
A turns out false, B is ignored. This feature allows you to
avoid state variables or complex "IF THEN ELSE" state-
ments. For example, if you are searching array "ARRY" for
value "A", you can simply say

WHILE (Index <- ArrayLimit) AND (ARRY[Index] <> A) DO
Index :■ Index + 1;

without having to protect ARRY[Index] from range error in
case A is not in ARRY and Index becomes greater than Array-
Limit.

Compatibility with UCSD Pascal syntax is poor, particularly
in the case of strings (Pascal/Z string functions are rudimen-
tary).

There is a symbolic debugger that requires a limited number
of cryptic two-letter commands to run it. It should not be ter-
ribly difficult to learn. Its use adds 12K to the resulting pro-
gram, which will be a problem primarily when linking. As
noted previously, I couldn't get it to fit in memory with my
800-line test program.

Pascal/Z and Pascal/MT + share a common problem with
exception handling. There is no convenient means to exit an
arbitrary nest of procedures if an error or exception occurs.
UCSD Pascal uses the EXIT statement (which allows virtu-
ally any procedure name as an argument); standard Pascal al-
lows a GOTO to just about any place in the program. Large
programs virtually always require some sort of mechanism to
handle exceptions. The alternative to an effective EXIT or
GOTO is to continually check a state variable indicating that
no error has occurred. If an error or exception occurs, one
must trickle program flow down a trail of exception detectors
in each called procedure on the way to the exception handler.

Separate Compilation

reported to me that it had saved 85 bytes from the 23,000 byte
code file. Sigh. But most of Pascal /Zs optimization is done
within the compiler, and its code size and run-time speed are
about equal to that of Pascal /MT + and the other CP/M-80
compilers.

Some miscellaneous comments on the operation of the com-
piler: the listing was not helpful in determining how big each
procedure was. The compiler could not tell me where any
code would actually wind up; this would require an assembly
listing with added Pascal source statement comments (avail-
able as an option). Actually determining the memory loca-
tion of a procedure or function would require both an assem-
bly listing and a linker map. The compiler does not accept a
source line longer than 80 characters. Finally, I tried a trick to
insert compiler options: nested include files (explicitly al-
lowed). I compiled the file:

{$L-,E+,P-}
{$IMYFILE.PAS }

and discovered that the compiler ignored the INCLUDE di-
rective, perusing only the two lines and giving me a "prema-
ture end-of-file" error.

Features and Faults

In contrast to MT + , which is loaded with features, the
Pascal /Z compiler is fairly small. There is room to compile
moderate-sized programs without running out of symbol
table. Several Jensen and Wirth features have been omitted,
including PACK, UNPACK and DISPOSE. These deletions
reflect the fact that there are no packed variables under
Pascal/Z (a serious problem if you're trying to manage disk
space or diddle bits). Set sizes are fixed at 32 bytes or 256 ele-
ments, obviating the use of sets as a bit-manipulation tech-
nique. Heap management is a la UCSD Pascal prior to ver-
sion IV.O (i.e., garbage collection is up to you).

Limited constant expressions (e.g., MaxArry = 100; Max-
AryMl = MaxArry - 1) are allowed, a nice touch. There is an
ELSE clause within CASE statements, also useful.

GET and PUT have also been deleted from Pascal/Z; all I/O
is performed with READ and WRITE. I have no reason to
doubt their claim that all you lose is access to the file window
variable "ft", having to read/write directly from some other
declared variable. Still, it's nonstandard.

Random access to structured files has been implemented with
particularly elegant syntax.

All reads from the console are done via the CP/M-80 line buf-
fer, meaning that you cannot read a character without fol-
lowing it with a < RETURN > (or writing your own assem-
bly-language BIOS calling facility). There is no excuse for this
small but significant oversight.

There is a major problem which overshadows all of the other
I/O features. There is no means whatever to tell if any disk
access (opening a file, closing a file, creating a new file, read-
ing or writing) was successful. Pascal/Z goes on its merry
way, acting as if all was well - no error message, no

I am enormously fond of creating procedures and functions
that perform a simple task well (say, reading an integer from

(continued next page)
Lifelines/The Software Magazine, Volume III, Number 4 23

the console in an uncrashable manner) and that can be used
anywhere, over and over, building upon each other. These
“software tools" (see the excellent text of the same name by
Kernighan and Plauger) must make no assumptions about
their environment and must in turn be able to be maintained
independently from host programs which use them, so that
their mutual integrity is assured.

With version 1.5, UCSD Pascal introduced an extraordinary
mechanism for developing software tools, the UNIT. A UNIT
is a separately compiled module intended for use by other
programs, which contains an explicit, public INTERFACE
section followed by an IMPLEMENTATION portion that is
private and can be modified without disturbing the linkage to
the outside world. When a UNIT is declared in a host pro-
gram, the compiler automatically reads in the INTERFACE
and treats it as if it were part of the host program declaration
section, thus insuring accuracy, saving oodles of typing, and
providing automatic type checking. Thus, not only can
UNITs be maintained independently of their host programs,
they can be sold to others in object form as software tools. (In
fact, a booming business of this sort has already begun.)

Under the new IV.0 version of UCSD Pascal, UNITs have
been expanded dramatically, with impressive results. Be-
cause UNITs and other program segments are loaded auto-
matically and discarded after use by the operating system if
there is insufficient room, true machine-independent
memory management is now a reality. Virtually unlimited
quantities of UNITs may be utilized by a program, and
UNITs may use other UNITs to perform their functions. Ma-
chine-dependent operations such as the interface to the CRT
console and modem drivers have been isolated into standard
UNITs, providing further machine independence.

Like the other CP/M-80-based Pascals, Pascal/Z has a primi-
tive external compilation facility. First, there is the ability to
pull in external procedures and functions from a library or
other externally assembled or compiled source. The name
and parameter list of any such procedure or function is listed
and declared as EXTERNAL before it is used in the program,
in much the same way that you declare a procedure or func-
tion FORWARD. Accuracy and type checking are entirely up
to you.

Second, you can break up your program into up to sixteen
modules, with the host module containing at a minimum all
global variable and type declarations plus the name and para-
meter list ’(again, declared as EXTERNAL) of any procedure
or function you wish to access outside of its module (thus
preserving a measure of independence of one module from
another). When the main module is compiled, a list of its
global types, variables, and procedure /functions is written to
the disk, where it is available to the other modules. (This
means that all the other modules must be recompiled when-
ever the main module changes.) The secondary modules may
be modified and recompiled independently of each other, and
then bound together with the linker. No type checking is
done, however, between routines declared EXTERNAL
within the host and their actual implementations. This facili-
ty is a moderately handy means of breaking up a large project
into modules. It is useless, however, to implement software
tools, since the creation and compilation of the tool should
precede, not follow, that of the host.

In an extension of the ability to create modules, Pascal/Z also
supports program overlays, with memory management per-
formed by a program (OVLYGEN.COM) that analyzes each
file and creates a SUBMIT file to drive the linker so the correct
memory allocation is produced. The overlay must explicitly
be brought into memory by the programmer, and there is
only one overlay area allowed.

Some Suggestions

Improve the compile-time interface by allowing command-
line compiler options and by printing lines containing errors
(along with a descriptive message) on the console, with the
optional ability either to abort compilation or to turn off the
assembly language output or the listing if desired. You should
be able to disable any and all outputs, just to fly through
compilation and turn up errors. The listing should give some
indication of procedure size, preferably with each line dis-
playing the offset in bytes from the start of the procedure.
The linker should generate a listing of where each procedure
is located in memory.

Provide a means of detecting disk errors. Correct single char-
acter reads so that they are complete with one keypress.

I suggest that the compiler and assembler interact with an as-
sembly file consisting of tokens, so that it is unnecessary to
write and read twenty characters of ASCII per byte of output
code. This change should shrink the size of the resulting as-
sembly file by a factor of ten, much in the manner of Micro-
soft BASIC's .BAS files. Since eliminating the need to pro-
duce ASCII assembly language should shrink the size of the
compiler, I'd like the option of using a stripped down version
of the compiler in order to get more symbol table space. (In
fact, I would be willing to use a separate utility to convert the
token file into an ASCII assembly language file, since I'd
rarely want to muck around with the assembly language out-
put anyway.) A compressed assembly source should speed up
both assembly and compilation dramatically.

Summary

It appears that Pascal/Z suffers from the same problem that
plagues most software: incest (the people who write the pro-
gram do most of the testing) . The problems of poor user inter-
face and marginal reliability should have been revealed
through thorough check-out by a wide variety of program-
mers. Pascal/Z needs work. However, I feel that it would not
be difficult to turn it into a truly useful development tool.

REPLY

Dear Ms. Mellin,

We would like to thank Lifelines for the opportunity to
respond to Mr. Gagne's review of our Pascal/Z compiler
prior to publication, and to have our comments printed in the
same issue as the review. We appreciate the professionalism
of Lifelines.

In general, the facts in Mr. Gagne's review are correct. There
are a few exceptions, however.

Lifelines/The Software Magazine, September 198224

Other users have written:

" . . . a superb software product! I've NEVER purchased
software of this quality before."

"An excellent system that is getting better."

"All in all I think it's an excellent package - keep up the
good work."

Several large companies are using our Pascal/Z for their ap-
plications programming, including Xerox Corporation, Jet
Propulsion Laboratories, Naval Ocean Systems Center, and
the National Bureau of Standards. Unlike Mr. Gagne, they
seem to feel that Pascal/Z is ideally suited for the develop-
ment of professional software products. We have bench-
marks available for Pascal/Z and Pascal/MT -I- testing for
both execution speed and final code size; these are available
to the public by writing to InterSystems.

At InterSystems we are dedicated to the support and im-
provement of all our software products, and appreciated
feedback from our users. Therefore, although we disagree
with some of his observations, we would like to thank Mr.
Gagne for his time and effort.

We also thank Lifelines for your fairness in allowing us to
comment.

Sincerely,

Laurie Hanselman Moskow
Software Products Manager
Ithaca InterSystems, Inc.
1650 Hanshaw Rd.
P.O. Box 91
Ithaca, N.Y. 14850

(1) The large version of Pascal/Z requires 54K, not 56K.

(2) It is not impossible to halt compilation; the compiler
can be stopped at any point during compilation by
typing Control C. This will halt compilation and pre-
serve all files output to that point, so the listing file will
be available for information on errors.

(3) We do not simply give Jensen & Wirth error codes for
all errors; the most common ones are given in English.
There are also full descriptions of our error messages
in the Pascal/Z User's Manual. We have implemented
many of our error-checking features as compiler op-
tions in order to minimize code size as much as possi-
ble. The options can be enabled at any time to provide
full diagnostics. With the E option (extended error
messages enabled, not only does our compiler give the
statement numbers in which the error occurred, but if
using separate compilation, it gives the module num-
ber as well. We wish to thank Mr. Gagne for bringing
the problem of $L- before the program heading to our
attention. We will test this and document it accord-
ingly.

(4) In reference to Mr. Gagne's problems with INCLUDE
files, the problem is that he did not have a program
heading at the beginning of the file.

(5) Almost all variables in Pascal/Z are automatically
PACKed, therefore we have not implemented PACK
and UNPACK. DISPOSE has been replaced by
MARK and RELEASE in Pascal/Z.

A few things to which Mr. Gagne objected have been modi-
fied in version 4.1, to be released this summer. These include:

(1) Overlays may now have user-defined base addresses,
allowing more than one overlay area.

(2) Better error messages are now given for operations in-
volving disk I/O.

We object to certain inconsistencies in Mr. Gagne's review, as
he seems to be largely biased towards U.C.S.D. Pascal.
While he objects to the few nonstandard features of our com-
piler, he extols many nonstandard constructs of U.C.S.D. -
indeed, most of the features Mr. Gagne finds most attractive
in U.C.S.D. are totally nonstandard. U.C.S.D. is NOT the
standard; in fact a standard for Pascal does not yet exist -
there is just a draft proposal. Although we have deviated in a
few instances, we have tried to adhere closely to the Jensen &
Wirth definition and to maintain the spirit of Pascal. When a
standard is adopted, we will make every effort to conform to
it, while maintaining compatibility with previous versions of
Pascal/Z.

We believe our compiler to be the highest quality Pascal com-
piler available for Z-80s, and many of our customers agree.
Peter Grogono, author of the well-known PROGRAM-
MING IN PASCAL, states that:

"To the best of my knowledge it is the highest quality
Pascal compiler available to users of microcomputers."

A Call For Manuscripts
Maybe you’ve written for publication be-
fore? Or perhaps you’ve always wanted
to write? It could be that you’ve got some
ideas you’d like to share with us. We’re
interested in hearing about your experi-
ences. We like to publish both longer es-
says and those short gems which can
hold so much important information. We
pay competitively and our authors will
tell you that writing for Lifelines/The
Software Magazine is satisfying in
many ways. We’re particularly inter-
ested in material on using and modify-
ing CP/M-80, CP/M-86, PC DOS, MS
DOS, UNIX, XENIX and UCSD Pascal.
Send us a brief resume of your software
experience, and samples of your previ-
ous writing, if you have any. (Don’t be
shy if you’re not an experienced writer.)
Then we can talk about your work and
about payment for your efforts. Write or
call: Editorial Dept. , Lifelines Publish-
ing Corporation, 1651 Third Ave., New
York, N.Y. 10028. Tel.: (212) 722-1700.

Lifelines/The Software Magazine, Volume III, Number 4 25

A Query-Driven Erase Function
Thomas N. Hill

About the ProgramIn the course of learning and using Digital Research's
CP/M-80 operating system, many people become aware of
minor inconveniences and annoyances which prevent
CP/M-80 from being the perfect operating system. This arti-
cle and the accompanying program listings are an attempt to
relieve one of these annoyances, namely the problem of
ERAsing files which cannot be easily referenced through the
use of 'wildcard' characters. The program presented here was
written after seeing a similar program in operation upon a
system running under MP/M-80.

The MP/M-80 ERAQ program very considerately queries the
user during erase operations concerning the advisability of
erasing that particular file. My ERAQ performs the same
function, but in addition it will also indicate whether the file
in question has been marked as $SYStem or R/O. If the file is
set to R/O and the user indicates that s/he wishes to erase it,
the program will automatically remove the R/O attribute be-
fore erasing the file.

The program was written for assembly using Microsoft's
M80 Relocating Macro-Assembler, but should translate to
other assemblers easily. I am not using any fancy macros and
the only special feature which is used is the INCLUDE
pseudo-op, which will cause the Macro-Assembler to read a
.LIB file from the default disk. This makes life easier for lazy
programmers (me included), since we only need to prepare
commonly used assembly code once. Listing 2 is the text of
the INCLUDEd file, EQUATES.LIB. Note that if you use one
of Digital Research's assemblers (ASM or MAC), you must
place an 'ORG 0100H' statement before the actual program
code. The program performs all disk and console operations
through standard BDOS function calls, and should therefore
perform upon any CP/M-80 2.x system.

Listing 1
TITLE ERAQ
SUBTTL PROGRAM TO PROVIDE QUERY DRIVEN ERASE FUNCTION s DIRPTR ; get cu r r en t t ab l e po in t e r

C, 32 ; move 32 by t e s of d i r ec to ry en t ry
D ; get a byte
M,A
H
D
C
LP1
DIRPTR ; save upda t ed t ab l e po in t e r
DIRCNT ; count en t r i e s found

DIRCNT
D, FCB1 ; f ind the next en t ry
C.SRCHN
BDOS
A ; done ye t?
ERAQO

.COMMENT \

WRITTEN BY: THOMAS N. HILL
ALASKA MICRO SYSTEMS
200 OKLAHOMA
ANCHORAGE, AK. 99504
(907) 337 -1984 [0900 - 1700 (AST)]

DATE WRITTEN: NOVEMBER, 1981
MODIFICATION AND UPDATE LIST:

11 /12 /81 VERSION 1 .0 FINALIZED.
11 /20 /81 UPPERCASE BUG FIXED ON ERASE QUERY.
11 /24 /81 DEFAULT TO * .* ON NULL COMMAND LINE.
12 /08 /81 SYS AND R/O DETECT ADDED.
04 /22 /82 ATTRIBUTE BIT CLEARED BEFORE OUTPUT,

FOR VB-3, ETC.
; t ab l e now con ta in s a l l s e l ec t ed d i r ec to ry en t r i e s .
; d i sp l ay them and r eques t e r a se pe rmis s ion .This program is pa t t e rned a f t e r the ERAQ func t ion

provided wi th D ig i t a l Resea rch ' s MP/M sys t em.
I t p rov ides the use r wi th a que ry d r iven e r a se func t ion which
accep t s an ambiguous f i l e r e f e r ence from the command l i ne and
scans the spec i f i ed d i sk for ma tches to the f i l e r e f e r ence .
All matches are d i sp l ayed to the conso l e and the ope ra to r i s
que r i ed as to whe the r or not the f i l e i s to be e r a sed . Those
f i l e s r eques t ed for e rasure a re then e r a sed from the d i sk
d i r ec to ry . F i l e s t agged as ' s y s t em ' or ' r e ad -on ly ' a re f l agged
as such when quer ied for e r a su re . \

Q

X

J
X

J

U

3
5

£
2

5
2

£
£

3
£

£
3

H, BUFFER
DIRPTR ; r e se t po in t e r to s t a r t of t ab l e
A, 8 ; e igh t cha r s in name
H ; save po in t e r to s t a r t of name
H ; over u se r byte
SENDSTRG ; p r in t the s t r i ng at (HL) for (A) by t e s
H
E , ' . ' ; p r i n t a pe r iod
OUTPUT
H
A, 3 ; t h r ee chars in type
SENDSTRG

INCLUDE EQUATES. LIB

; add i t i ona l equa t e s

S

SETATR EQU 1EH ; change f i l e a t t r i bu t e b i t s ; now check a t t r i bu t e by t e s

E, •
OUTPUT ; p r in t 2 spaces
E , ' '
OUTPUT
H ; s t a r t of name
D. 9
D ; f i r s t a t t r i bu t e byte
A,M ; get char

; put a t t r i bu t e b i t in c a r ry
DISP2
A, TRUE ; f l ag R/0 f i l e
ROFLG
H ; sy s t em a t t r i bu t e
A,M

DISP3
A, TRUE
SYSFLG ; se t sy s t em f i l e f l ag
ROFLG ; now see if any a t t r i bu t e s a re s e t
B. A
SYSFLG
B
DISP7
E. TAB
OUTPUT
DISP6

; program commences

;CSEG is de fau l t

FCB1+1
; no f i l e r e f e r ence on command l i ne?

ALLFILE
D.DMABUF
C. SETDMA
BDOS
D. FCBl

; no f i l e r e f e r ence , de fau l t to

C.SRCHF
BDOS

FIN
A
A
A

; f ind f i r s t occur rence of the

; r e tu rn Offh if no match

; o f f s e t to bu f f e r add re s s

r eques t ed f i l e
DISP2:

A
A
A
H.DMABUF
D, 0
E, A
D

; the re must be an ea s i e r way!

; c a l cu l a t e o f f s e t

DISP3:

ERAQ:

ERAQO:

Lifelines/The Software Magazine, September 198226

g E
B ; sub t r ac t power of t en f rom b ina ry va lue
CNVRT1 ; do i t un t i l we go nega t ive
A. B

; now add back l a s t va lue sub t r ac t ed
B, A
A.C

DISP7 :

J
J

J
J

J
J

J
X

J

Q

Q

OUTPUT
ROFLG ; p r in t R/O symbo l?

DISP4 ; nope .
D, RO
STROUT ; p r in t r ead /on ly symbol a f t e r f i l e name
ROFLG ; i f p r in t ed R/O, t hen p r in t comma
A
DISP8
E, ' , '
OUTPUT
SYSFLG

DISP5 ; p r in t sy s t em symbo l?
D. SYS
STROUT ; ye s , p r in t i t a f t e r f i l e name
E, ') ' ; c l o se symbol s t r i ng
OUTPUT
D.MSGl ; a sk abou t e r a s ing f i l e
STROUT
C. CONIN ; ge t answer
BDOS
PSW ; s ave answer
CRLF ; p r in t a c r l f
PSW
5FH ; make uppe r ca se
03 ; check fo r con t ro l - c abo r t
FIN
'Y ' ; i f an swer i s ye s , then e r a se
ERASE
A, FALSE
ROFLG ; e l s e c l ea r f l ags and l ook fo r nex t ma tch
SYSFLG
DIRCNT ; f i n i shed ye t ?
A
DIRCNT
FIN
DIRPTR ; ad jus t t ab l e po in t e r
D, 32
D
DIRPTR
DISPO

DISP4 :

DISP8 :

DISP5 :

DISP6 :

C.A
B ; make su re we two ' s complement i t
B ; add i t back in

PRTDIG: ADI
PUSH
MOV
CALL
POP
RET

; conve r t to ASCII

; p r in t i t

; check fo r go-ahead

; make uppe r ca se
; i f Y then p roceed , e l s e abo r t

; l eave d i sk number i n t ac t

; make FCB a l l qmarks

; and r e s t w i th ze ros

H
E,A
OUTPUT
H

ALLFILE:
LXI
MVI
CALL
MVI
CALL
PUSH
CALL
POP
ANI
CPI
JNZ
LXI
MVI

ALLI : MVI
INX
DCR
JNZ
MVI

ALL2: MVI
INX
DCR
JNZ
RET

D.MSG4
C.PRTBUF
BDOS
C.CONIN
BDOS
PSW
CRLF
PSW
5FH

FIN9
H.FCBl+ l
B , l l
M, ' ? '
H
B
ALLI
B,24
M,0
H
B
ALL2

; e r a se the f i l e po in t ed to by t he add re s s s to r ed in DIRPTR
E,CR
OUTPUT
E,LF
OUTPUT

ERASE: LHLD DIRPTR
LDA FCB1
MOV M,A
LDA ROFLG ; check fo r R/O s t a tu s
ORA A
JZ ERAS1
PUSH H ; save f i l e po in t e r
LXI D.9
DAD D
MOV A,M ; change R/O a t t r i bu t e b i t
ANI 7FH
MOV M,A
POP H
PUSH H ; r ecove r , r e save po in t e r
XCHG
MVI C.SETATR ; a l t e r f i l e a t t r i bu t e s
CALL BDOS
POP H ; r ecove r saved po in t e r

ERAS1: XCHG
MVI C, DELETF ; e r a se the spec i f i ed f i l e
CALL BDOS
LDA ERACNT ; coun t f i l e s e r a sed
I NR A
STA ERACNT
RET

FIN: CPI 03 ; was i t an abo r t ?
cz FIN9

FINO: LDA ERACNT ; how many d id we e r a se?
MVI H,0
MOV L.A ; conve r t to dec ima l va lue
LXI B . -100
CALL CNVRT
MOV A,E
CPI 0 ; check for leading zeros
JZ FIN1
CALL PRTDIG ; p r in t the d ig i t

F IN1 : LXI B . -10
CALL CNVRT
MOV A.E ; check fo r l e ad ing ze ros
CPI 0
JZ FIN2
CALL PRTDIG

FIN2: MOV A.L ; one d ig i t
CALL PRTDIG ; p r in t i t , even i f i t i s z e ro
LXI D.MSG2
MVI C.PRTBUF
CALL BDOS ; p r in t the message a f t e r t he va lue
JMP CPM ; r e tu rn to ope ra t i ng sys t em

FIN9: LXI D.MSG3
MVI C.PRTBUF
CALL BDOS ; i nd i ca t e an abo r t
RET

; p r in t the s t r i ng a t (HL) fo r (A) by t e s to the conso l e

C.CONOUT
BDOS ; p r in t f i l e name

H
D
C.PRTBUF
BDOS
D
H

; messages

MSGI: DB
MSG2 : DB
MSG3: DB
MSG4 : DB
RO: DB
SYS: DB

; da t a

DIRPTR: DW
DIRCNT: DB
ERACNT: DB
ROFLG : DB
SYSFLG: DB
DMABUF: DS
BUFFER EQU

TAB, 'E ra se t h i s f i l e ? $ '
' f i l e s e r a sed . ' ,CR ,LF , ' $ '
' P rog ram abo r t ed . ' ,CR ,LF , ' $ '
'Use * .* as f i l e ma tch? $ '
'R /O$ '
'SYS$ '

BUFFER
0 ; count of s e l ec t ed d i r ec to ry en t r i e s
0 ; coun t of e r a sed f i l e s
0 ; s e t i n i t i a l f a l s e
0
130
$; s t a r t of d i r ec to ry bu f f e r .

END

Listing 2
; SYSTEM EQUATES

0
CPM+100H
0005H ; BDOS ENTRY POINT
005CH ; CP/M FILE CONTROL BLOCK
006CH ; SECOND FILE CONTROL BLOCK
0080H ; DEFAULT COMMAND BUFFERn

Ti

co
 H

o

CO
 O

 O

O

"O
 -Q

C

n
tn

 o

>
3

N
>

f—
 C

/1

m
 t

n
co

 t
n

tn
 t

n
X2

 <
O

 X
2

X2
 X

2
O

; NON-DISK I /O FUNCTIONS

CON IN EQU 1 ; CONSOLE INPUT
CONOUT EQU 2 ; CONSOLE OUTPUT
LSTOUT EQU 5 ; LIST DEVICE OUTPUT
PRTBUF EQU 9 ; SEND A STRING TO THE CONSOLE
RDBUF EQU 10 ; GET A STRING FROM THE CONSOLE
CONSTAT EQU 11 ; CONSOLE STATUS
VERS EQU 12 ; RETURN CP/M (MP/M) VERSION NUMBER; p i ck up cha r

; c l ea r MSB

; p r in t i t

; done ye t ?

; DISK I /O FUNCTIONS

SELDSK
OPENF
CLOSEF
DELETF
READF
WRITEF
MAKEF
SETDMA
SIZEF
SRCHF tn

rn
tn

c
n

rn
c

n
c

n
tn

rn
tn

jo
b

jQ
jo

jO
jb

jQ
jb

jb
jo

c
c

c
a

a
a

a
c

a
c

SELECT DISK
OPEN FILE
CLOSE A FILE
DELETE A FILE
READ A RECORD
WRITE A RECORD
CREATE A FILE
SET DISK DMA ADDRESS
COMPUTE FILE SIZE
sea rch fo r f i r s t ambiguous f i l e

(continued next page)
CNVRT: MVI

Lifelines/The Software Magazine, Volume III, Number 4
27

SRCHN EQU 18 ; serach for next ambiguous file

Notice; THOSE FUNCTIONS REQUIRING A BYTE ARGUMENT WILL EXPECT THAT BYTE

; TO BE IN THE E REGISTER. ADDRESS ARGUMENTS ARE PASSED IN THE

; DE REGISTER. RETURN CODES ARE PASSED IN THE ACC. IN GENERAL,

; A RETURN OF ZERO INDICATES SUCCESS, WHILE A OFFH INDICATES FAILURE.

; character equates

The August issue was placed into the mail on July 27th.
If you had any problem with the timeliness of this issue,
please call our Subscription Department at (212)
722-1700, or write to Lifelines/The Software Magazine
Subscription Department, 1651 Third Ave., New York,
N.Y. 10028. We expect to place this issue, dated Septem-
ber 1982, into the mail around August 25th. Each month
we will print the date of the previous issue’s mailing and
would appreciate your help in tracking the deliveries.

H

-•

H

co
 c

o
m

 m
 r

-
o

X
>

>
uo

 m
 o

on

z)

c
r-

□□

r

Ti
 o

m

co

c-

rn
 r

n
m

 r
n

rn
 r

n
m

 r
n

m
XD

 X
D

XD

 X
D

XD
 X

O
 X

D
ZD

 X
D

c
c

c

a
a

c
c

c
c

o
o

o

o
o

-

-o
o

O

00

>
DO

 >

u
X

X

x
x

x
x

x
x

x
X

; carriage return
; line feed
; escape code
; end-of-file, control-z
; terminal bell
; backspace
; tab char

Volume 84, Catalogue and Abstracts

CP/M Users Group
Catalogue

DESCRIPTION: MODEM version 7.65
XMODEM version 5.0

NUMBER SIZE NAME COMMENTS

-CATALOG.084 CONTENTS OF CPMUG VOL. 84
ABSTRACT.084 Abstracts of files on this disk
CRCK.COM Program for checking CRC's of files
CRCKLIST.084 CRCK's of files on this disk

084.1 16K MODEM7.DOC Documentation for MODEM pro-
gram
[from CPMUG Vol. 79]

084.2 14K MODEM76.LIB Macro library used with MODEM
7.65

084.3 6K MODEM76.SET Instructions for "hot-patching"
MODEM

084.4 63K MODEM765.ASM Macro assembler source code for
MODEM 7.65

084.5 10K MODEM765.COM Object code of MODEM 7.65
084.6 18K SEQIO22.LIB Macro library used with XMODEM

5.0
084.7 3 K XMODEM47.DOC Documentation for XMODEM pro-

gram
084.8 49K XMODEM50.ASM Assemble r source code for

XMODEM 5.0
084.9 IK XMODEM51.FIX Notes on a bug fix for XMODEM

Note: MODEM program requires assembly with Digital Research MAC macro-
assembler. XMODEM may be assembled with ASM.COM if the "logging" feature
is disabled, otherwise MAC is required for assembly.

written by Ward Christensen, now
greatly modified and enhanced by a
variety of programmers. For those not
familiar with MODEM: this program,
once customized to your particular sys-
tem hardware, will allow your system
to act as a computer terminal over the
telephone lines. In addition, MODEM
uses a checksum /CRC block transfer
method of sending and receiving disk
files over the phone lines, with auto-
retry on error, error reporting, count-
ing, etc. It is a widely endorsed and
used program which soon becomes an
essential tool for the serious microcom-
puter user. [Note: Modem hardware is
required].

084.7 18K SEQIO22.LIB
084.8 3K XMODEM47.DOC
084.9 49K XMODEM50.ASM
084.10 IK XMODEM51.FIX

These files comprise the XMODEM
package, a utility found on Remote
CP/M-80 (RCPM) systems. XMODEM
uses the same protocol as MODEM,
but is designed for sending and receiv-
ing files only, with greatly simplified
commands. Version 5.0 implements a
"logging" feature which "logs" the files
sent and received, the date and time
(assuming your RCPM uses a clock/
calendar of some sort), and the name of
the user sending or receiving (user data
will be expected in the file "LAST-
CALR" which is created by both the
RBBS and SIGNON systems). This fea-
ture, if enabled, will require assembly
with Digital Research's MAC macro-
assembler. If this feature is disabled,
ASM.COM may be used. If the LAST-
CALR file is not found, no logging will
take place.

Jim Mills, CPMUG Reviewer

These files comprise the MODEM
package, latest revision. Digital Re-
search's MAC macro-assembler is re-
quired for assembly. This version
incorporates many bug fixes over the
version released in CPMUG Vol. 79.
Most users of CP/M-80 will be familiar
with the MODEM program, originally

Abstracts

084.1 16K MODEM7.DOC
084.2 14K MODEM76.LIB
084.3 6K MODEM76.SET
084.4 63K MODEM765.ASM
084.5 10K MODEM765.COM

Lifelines/The Software Magazine, September 198228

Feature

A Preview of Supersoft’s
Ada Compiler

Steve Patchen
have done this with the terminal control strings. The routine
putscreenO stops sending characters to the terminal if it en-
counters the null character in the string. The attributes de-
fined by Ada to allow a program to determine the length of a
string are missing from this release also. This means all string
manipulation procedures have to know the length of the
strings they will handle and cannot determine this on their
own. There is also a problem with mixing string arrays and
character arrays because this version does not allow assign-
ment of string literals to character arrays. Assignments must
be made character-by-character. String concatenation has
also been omitted from the first release, forcing character-by-
character building of resultant strings. Indices, however, are
limited only by integer size (-32768..32767) and memory
availability.

The characterO function is complimented by the integer()
function for converting integers to characters and vice versa.
I attempted to provide a feature for printing the screen on the
printer, but ran into a bug in the bdos() function . This bug has
been corrected on the version currently being distributed.

Another inconvenience I ran into was that all the files had to
be on the same device: the source file intermediate files and
the resultant .COM file. There are three other limitations
which restrict the application of this compiler. Only seven
digit single precision numbers are provided in addition to
integers; file reading and writing can only be done sequen-
tially, and there is no trace or debugging facility provided for
locating errors discovered while running programs. The
compiler does have good compiler error messages though.

The compiler comes with several application examples, most
of which are games. There is also a primitive calculator pro-
gram. It has a poor terminal interface, but the strategy used in
this editor could be used to make the calculator operational
on more terminals.

In Summary

Ada Release 1.00a distributed by;
by Dave Norris Supersoft, Inc.

P.O. BOX 1628
Champaign, Il 61820

The first release of this compiler is a small subset of the
Department of Defense's definition for Ada. Supersoft says
they plan eventually to implement the full compiler. The cur-
rent release lacks a number of features essential for many
serious applications. Instead of attempting a full review of a
product likely to change considerably over the next several
months, I will demonstrate some of those features of Ada
which are present and discuss related missing features. To
this end I have written a simple screen editor which incor-
porates some of the structures I will discuss.

There are two basic areas I have addressed with this program
(see source listing): the console terminal device and string
manipulations. In this and possible future articles I will also
be keeping an eye open for weaknesses in Ada (other than
those pointed out in July's article) for use in business applica-
tions.

Discussion Of Features

The sample program first defines four console control strings.
These strings are first defined as strings of blanks and later
loaded by the procedure screen init with values for the
appropriate terminal. An enhancement would be to load
these parameters from a terminal configuration file. Next,
several console keyboard function keys are defined. The rest
of the data definitions define the screen configuration used
and provide program variables. The declared procedures
supply cursor manipulation for screen editing.

Strings in Ada are fixed length one dimensional character ar-
rays similar to Pascal strings. Ada, however, also defines a
SLICE, which is a one dimensional array denoting a sequence
of consecutive components of a one dimensional array (slice
:: = array name(discrete range)). The discrete range must
be either a null range or possible index values for the named

array. This slice feature facilitates sub-string manipulations
like searches and matching and partial substitutions. Since
Supersoft's current release doesn't include this feature,
character-by-character manipulations must be performed.
This makes such operations noticeably slower. For instance,
the for loop in the screen init routine was first tried with a
nested for loop which did character-by-character loading of
spaces to the array. This produced a significant delay in
loading and starting the program.

Since all strings are fixed in length, routines like put(string)
send all the characters in the array to the terminal. If only a
few of the characters in the string are significant, the
programmer has to provide his or her own procedures for
displaying and manipulating the significant part of strings. I

Although release 1 of Ada has very few features, it can per-
form simple applications like the calculator and simple screen
editors. The lack of random access will limit its use for data
entry and report generation.

Source Code For Sample Program
-- 07/18/82
— copyright 1982 by Steve Patchen
— A test routine for screen entry
pragma print(on);

procedure typer is

— terminal dependent features

clear_screen : string(0..7) := "
home_cursor : string(0..7) := "
erase_end_l Ine : string(0..7) := "
cursor_xy : string(0..7)
offset : constant integer :» 32;

— keyboard command functions / .• 1 . \(continued next page)
Lifelines/The Software Magazine, Volume III, Number 4 29

putscreen(home_cursor);
for i in r..23 loop

put_cursor(i,zero_col);
putscreen(erase_end_line); put(screen(i));

end loop;
end display;

cr : constant character := character(133;
back_space : constant character := character(8);
backspace : constant character := character(19);
rubout : constant character := character(127);
print_cmd : constant character := character(16);
esc : constant character := character(27);
erase_line : constant character := character(25);
insert_line : constant character := character(14);
forspace : constant character := character(4);
tab : constant character := character(9);
backtab : constant character := character(l);
up_line : constant character :■ character(5);
down_line : constant character := character(24);

— bdos equates

1st : constant integer := 5;

— program constants

zero_col : constant integer := 0;
top_row : constant integer := 1;
length : constant Integer := 79;

input : character;
col_pos,row_pos,DE : integer := 0;
error : boolean :■ false;

screen : array(1..23) of string(0..79);
title : string(0..79) " ------------------- THIS IS A TEST TITLE LINE
null_string : string(0..79) :■ "

— this initialization routine contains terminal dependent constants

procedure screen_init is
begin
clear_screen(0) :■ character(27);
clear_screen(l) := 'H';
clear_screen(2) :• character(27);
clear_screen(3) := 'J';
clear_screen(4) := character(O);
home_cursor(0) :■ character(27);
home_cursor(l) := 'H';
home_cursor(2) := character(O);
erase_end_line(O) := character(27);
erase_end_line(1) := 'K';
erase_end_line(2) :■ character(O);
cursor _xy(0) :• esc;
cursor_xy(l) :• 'Y';
cursor_xy(2) := ' ';
cursor_xy(3) := ' ';
cursor_xy(4) := character(O);
for i in 1..23 loop

screen(I) :■ null_string;
end loop;
end screen_init;

— This routine prints strings terminated by a null to the terminal

procedure putscreen(c : string) is
n : integer := 0;
begin
while n <= 7 and c(n) > character(O) loop

put(c(n));
n := n + 1;

end loop;
end putscreen;

procedure put_cursor(y, x : integer) is
begin

cursor_xy(0) := character(27);
cursor_xy(l) := 'Y';
cursor_xy(2) := character(y + offset);
cursor_xy(3) := character(x + offset);
cursor_xy(5) := character(O);
putscreen(cursor_xy);

end put_cursor;

procedure next_pos is
begin

col_pos := col_pos + 1;
if col_pos >79 then

col_pos := 0;
row_pos := row_pos + 1;
if row_pos > 23 then

row_pos :=.l;
end if;

end if;
end next_pos;

procedure back_pos is
begin

col_pos := col_pos - 1;
if col_pos < 0 then

col_pos := 79;
row_pos :■ row_pos - 1;
if row_pos < 1 then

row_pos := 1;
col_pos := 0;

end if;
end if;

end back_pos;

procedure clear_line(x : integer) is
begin

col_pos := 0; row_pos := x;
put_cursor(row_pos,col_pos);
putscreen(erase_end_line);
screen(x) null_string;

end clear_line;

procedure move_lines(x : integer) is
begin

for i in reverse 22..x loop
screen(i+l) := screen(i);

end loop;
end move_lines;

procedure display(r : integer) is
begin

begin
screen_init;
putscreen(clear_screen);
put(title);newline;
row_pos := 1; col_pos := 0;
put_cursor(row_pos,col_pos);

loop

— get an input character
get(input);
case input is

when back_space I backspace =>
back_pos;

when forspace ■>
next_pos;

when backtab =>
if col_pos < 8 then

col_pos := 0;
back_pos;

else
If col_pos rem 8 = 0 then

col_pos := col_pos - 8;
else

col_pos := (col pos/8)*8;
end if;

end if;

when tab =>
if col_pos > 71 then

col_pos :=79;
next_pos;

else
col_pos := (col_pos/8)*8+8;

end if;

when cr =>
row_pos := row pos + 1;
col_pos := 0;
if row_pos > 23 then

row_pos := 1;
end if;

when down_line =>
if row_pos ■ 23 then

row_pos := top_row;
else

row_pos := row_pos + 1;
end if;

when up_line =>
if row_pos = 1 then

row_pos := 23;
else

row_pos := row_pos - 1;
end if;

when esc =>
bdos(O);

when erase_line •>
clear_line(row_pos);

when insert_line =>
move_lines(row_pos);
cIear_line(row_pos);
display(row_pos);

when print_cmd =>
for i in 1..23 loop

put(screen(i));
for j in 0..79 loop

DE := integer(screen(1)(j));
— bdos(1st,DE); bdos has a bug in first version

end loop;
newline;

end loop;
putscreen(clear_screen);
put(title);
display(top_row);
put_cursor(row_pos,col_pos);

when others =>
screen(row_pos)(col_pos) := Input;
next_po8;

end case;
putscreen(home_cursor);put(” ");
putscreen(home_cursor);put(row_pos);put('-');put(col_pos);
put_cursor(row_pos,col_pos);

end loop;

end typer;

Lifelines/The Software Magazine, September 198230

Feature

8080 Assembler Programming
Tutorial: Subroutines, Part 4

Ward Christensen
For data storage, CP/M-80 divides the remainder of the disk
into logical blocks, typically IK (8 sectors) in single density,
or 2K in double density. Hard disks (or even double sided
floppies) might have 4K or larger blocks.

These blocks are numbered starting at the directory, with the
first block of the directory being numbered 00. On single den-
sity 8" disks, the directory occupies 16 sectors, or two blocks.
Thus the first file on an empty disk is placed in block 02. If the
file is longer than 8 sectors, it overflows into block 03. See
FCB bytes 16-31 below, to see where this information is kept
for a file.

On single density disks (or in general any disk containing
fewer than 256 blocks) a single byte pointer is used. If a disk
has more than 255 blocks, two bytes are used.

SCRAMBLING: To obtain relatively good speed accessing
files, CP/M-80 usually "scrambles" the sectors on a track. If it
didn't, you would read one sector, but when you go back to
read the next, you might have just missed it, meaning you
have to wait another disk revolution (1/6 second on 8" flop-
pies) to read it. The standard scrambling for CP/M-80 is
every 6 sectors. Thus, rather than reading an 8" floppy sec-
tors 1, 2, 3... you read sectors 1, 7, 13, 19, 25, 5, 11, 17, 23, 3,
9, 15, 21, 2, 8, 14, 20, 26, 6, 12, 18, 24, 4, 10, 16, and 22.

You don't need to know this, unless some time you want to
figure out exactly what sectors a particular file occupies.

BIOS

Disk I/O

This month's tutorial will deal with CP/M-80 disk input and
output, including directory searches, making, opening,
reading, writing, closing, and erasing files.

Background

Rather than just saying "this is how you open and read a disk
file", I'll start with some background, working up from disk
layout, to directory layout and file allocation - all the
background you should need to be comfortable working with
files.

Disk Layout

Floppy and hard disks consist of magnetic material. The
read /write head of the disk drive can move to access one of
many concentric circles on the disk, called tracks. Each track
is further divided into several segments, called sectors.

On a standard 8" single density CP/M-80 floppy disk, there
are 77 tracks with 26 128-byte sectors per track. While there
are exceptions, double density disks usually have 26 256-byte
sectors, 15 or 16 512-byte sectors, or 8 1024-byte sectors.
Double sided drives double this disk capacity.

By convention, tracks are numbered starting at 0, and sectors
starting at 1. I have heard a plausible explanation for this:
early IBM disks had a special record called "record 0" on each
track, containing system information. Thus the first actual
user data record was number 1.

There is virtually no limit to the allowable layout for a disk
which CP/M-80 can access. There is an upper limit on the
total size of a single disk - 8 megabytes (8,338,608) - which
CP/M-80 2.x can handle. However, larger disks may be
broken up into smaller logical disks, each of which is then
limited to 8 MB. For example, I broke my hard disk into
many logical disks, ranging in size from 248K to 2.2 MB. One
reason this was that a DIR of an 8 MB disk would simply be
overwhelming.

Allocation

CP/M-80's Basic Input/Output System provides the actual
disk I/O by performing the functions of disk select, track
select, sector select, setting the address, and then either
reading or writing.

The BIOS is hardware-dependent upon the particular
machine in which CP/M-80 is running.

In CP/M-80 2.x, the BIOS contains tables describing the disk
format. In CP/M-80 1.4, this information was contained in
BDOS, and thus not readily accessible for changing.

BDOS

Recall from last month, that the CP/M-80 Basic Disk Operat-
ing System does the "logical" I/O to the console, disks,
printer, reader and punch. BDOS deals with the disk in terms
of named files.

CP/M-80 Files
The first part of a disk is usually reserved for CP/M-80 use. In
a standard 8" single density disk, track 0 sector 1 is the "boot
sector", i.e. the one that the hardware reads in. The rest of
track 0 and part of track 1 contain CP/M-80 itself: CCP,
BDOS, and BIOS. The boot sector reads this in. The direc-
tory starts on track 2.

Lifelines/The Software Magazine, Volume III, Number 4

In most circumstances (and specifically in this tutorial) you
need not be concerned about the disk layout. Instead, you

(continued next page)

will deal with the disk through CP/M-80's BDOS, as named
files.

DIRECTORY: A file is identified by an 8-byte file name and a
3-byte file type, stored in the directory. Each directory entry
takes 32 bytes, so there are four per sector. Single density
typically has 64 directory entries, double has 128, and double
density double sided may have 256. Hard disks - well there is
no practical limit.

In single density, each directory entry keeps track of up to
16K of a file (128 sectors). In some larger disk formats, partic-
ularly hard disks, a directory entry may keep track of more
than 16K.

EXTENTS: If a file is more than 16K, it is necessary to use
another directory entry for it. Each subsequent entry is called
an extent. CP/M-80 automatically maintains the extent as an
additional byte in the directory immediately following the
filename-filetype. Generally, you need only initialize the ex-
tent to OOH before working with a file.

SECTOR I/O: BDOS calls provide I/O at the sector level,
i.e. there is no built-in reading of "fields" or "characters".
However, this month's sample program will do some byte-at-
a-time reading of a disk file, and next month I'll cover some
more generalized subroutines for reading a byte and writing a
byte.

File Control Blocks (FCB)

logged in disk is not the same as the one printed in the most re-
cent prompt. To refer to specific disks, specify "A:" or "B:"
(etc.) on the filename(s) given in a command, or use 01 for A,
02 for B, etc. to explicitly refer to a disk.

1-8 (5DH-64H) is the file name in upper case letters, left
justified and padded with spaces.

9-11 (65H-67H) is the file type in upper case letters, left
justified and padded with spaces.

12 (68H) is the extent. Usually, just set it to OOH. On rare occa-
sions, you might want to not open the file at the beginning,
and in this case select the appropriate extent: 00 if the sector
wanted is in the first 128 sectors, 01 if in the second 128, etc.
13-14 (69H-6AH) are reserved bytes; set them to OOH.

15 (6BH) is the file size in sectors, if this is a one-extent file. If
the file is longer than one extent, then it is the length
represented by this extent. A full extent is typically 128 (80H).
16-31 (6CH-7BH) is 16 bytes where CP/M-80 keeps track of
where the file is. These 16 bytes are the numbers of the blocks,
as mentioned above under ALLOCATION. You need not
worry about these bytes.

An aside on CP/M-80 disk allocation: CP/M-80 knows
where it can place new files through a bit map in memory,
with each bit corresponding to a block. The map is built when
you "log in" a disk. CP/M-80 sets up the bit map showing all
blocks available, then "zaps" off the bits corresponding to the
directory. It then reads the directory, looking at the block
pointers for each file, and turns off the bits used by files. Then
when another file is opened for writing, CP/M-80 finds an
"open bit" in memory. That way, there is no record on disk of
free space which could get screwed up, i.e. be inconsistent
with the actual files. The bit map is dynamically determined
each time a disk is logged in. More aside: this bit map is what
STAT looks at to determine how full the disk is. For example,
if it finds 27 open bits in the bit map, and the disk is double
density using 2K blocks, STAT reports 54K free on the disk.

32 (7CH) is the current sector number to read or write. Start it
at 00.

To perform disk I/O, CP/M-80 must know the name of the
file you are using. It does so when you point the DE register
pair to a file control block. The layout of the FCB is covered
in the CP/M Interface Guide, should you ever need to
quickly find it.

When you type a command to CP/M-80, any name you
place on the command is automatically formatted into a
system FCB at location 5CH. If you typed a second name,
that name is formatted into location 6CH.

Most commands can use the FCB at 5CH as filled in by
CP/M-80. If you have given a second name (or perhaps op-
tions for the program), CP/M-80 will have placed it at 6CH,
so you will have to move them from 6CH (or at least process
them) before actually using the FCB at 5CH, since once used,
the system FCB occupies 5C-7C (or -7F if using CP/M-80 ran-
dom file commands).

An FCB must be 33 bytes long, or 35 if doing random reads
using the new CP/M-80 2.x random I/O facilities. I will not
discuss this ability for the time being, as it is infrequently
used.

Now, let's look at some typical FCBs as they appear after a
command to the CP/M-80 A > prompt has been entered. To
do so, I'll use a program I wrote called Q, which simply
dumps memory from 00 to FF, so I can see what FCBs look
like. Also, whatever you typed as part of the command
(minus the command name itself) is stored character-by-char-
acter at 80H, so Q helps me see what this "raw buffer" looks
like, too. Incidentally, if the operand of Q starts with an "@",
then the operand is taken to be an address to dump from.
Thus "Q @200" dumps memory starting at 200. Q.COM
itself takes 2 sectors, from 100H to 200H, when it runs.
I have included a listing of Q.HEX for you to type in and
LOAD, to learn more about FCBs (see Listing 1). Edit a file
called Q.HEX, type in the lines exactly as they appear, end the
edit, then type "LOAD Q". This will create Q.COM. Since
the HEX file contains a checksum to validate the data, the
LOAD program will abort if you have made any typing mis-
takes. The only likely error it wouldn't catch would be an en-
tire missing line.

Here are some sample executions, showing only enough of
5CH's contents so that you can see what was stored in the
buffer starting at 80H. Note that "garbage" exists in this buf-
fer, but that address 80H contains the length of valid data. I

Lifelines/The Software Magazine, September 1982

Here is the FCB layout, as it should be in memory for use in
accessing files. A number (e.g. 0) or number range (e.g. 1-8)
specifies the displacement within the FCB for the given
byte(s). The addresses following give the standard addresses
for the system FCB which starts at 5CH - more about that
later.

0 (5CH) identifies the disk you are referring to. If it is a 0, then
you are referring to the currently logged in disk, i.e. the one
given in the prompt (such as A>). However, since there is a
BDOS call to change the logged in disk, it may be that the

32

did these at different times and in different orders, so don't try
to make sense of the "garbage".

Let's look at one with no operands:
A>q

00 04 08 0C

0080 0A205448 49533D54 48415400 53414D50 | . THIS=THAT . SAMP I

Only "THIS" is stored in the FCB. The " = " told CP/M-80 to
stop handling the filename. Other characters that do this are:
" _", "<" , ">" , and The latter is a comment symbol.

Special characters, such as tabs, are rejected if you try to
make them part of a filename.
If a special character such as a tab is necessary as part of a
command, it must be after what CP/M-80 would treat as the
two possible filenames.

For example, I have a simple variable-length record sort, to
which you specify delimiter characters for the sort field,
following the name of the file to sort. If I wanted to skip over
a % sign in each record, I'd just say: sv filename @ %

The "@" means "at", then "%" specifies "at which character"
the sort is to begin in each line of the file.

0050 00202020 | . I
0060 20202020 20202020 00000002 00202020 I I
0070 20202020 20202020 00000000 00DB03C4 I I
0080 00008601 3E2ECD36 01237DE6 0FC27901 |>. . 6 .#} . . .y . I

5CH is 00, showing that we specified no disk. The file names
stored at 5DH and 6DH are blank. (I put the 00, 04, 08, 0C in
just this once, to help you realize how the columns are num-
bered.)

Let's put just a disk specifier in the command:
A>q c:

0050 03202020 | . I
0060 20202020 20202020 00000002 00202020 | I
0070 20202020 20202020 00000000 OODBO3C4 | I
0080 0320433A 002E0D0A 1A000000 00000000 | . C: I I used my Q.COM to learn how the arguments to SV would

look. Let's go back and "look over my shoulder" at what I
tried:

5CH contains the 3, meaning we explicitly requested drive C.

Let's try another, with two file names.
A>q t e s t . f i l e s ample . out

A>q f i lename @%

0050 0046494C I .FIL I
0060 454E414D 45202020 00000002 00402520 | ENAME |
0070 20202020 20202020 00000000 00DB03C4 j I
0080 0C204649 4C454E41 4D452040 25007375 | . FILENAME @Z.su|

SV scans for the "@" by looking at 80, to see that the number
of characters typed is not zero, then scans from 81 on to look
for an @ sign. If a 00 byte is found before finding an @, SV
knew there was no @ . I could have just looked in the second
FCB (at 6D) for the @, but characters which don't apply to a
filename might have been entered, such as or which
then wouldn't appear in the filename. Thus using the "raw
data buffer" at 80 is the best technique. (Also, SV allows spe-
cifying an output filename in case you don't want the file
sorted and written back upon the input file. This output file
would be in the second FCB, so I must use the technique of
scanning the buffer at 80.)

0050 00544553 I .TES|
0060 54202020 2046494C 00000002 0053414D |T FIL SAM|
0070 504C4520 204F5554 00000000 00DB03C4 |PLE OUT I
0080 15205445 53542E46 494C4520 53414D50 | . TEST. FILE SAMP I
0090 4C452E4F 55540073 2C206F72 8DOA7175 iLE.OUT.s, o r . . qu |

5CH is zero, showing again no disk specified. The first name
is formatted into 5CH, the second into 6CH. Note how the
filename was left justified, and the filetype was placed after
the 8-byte filename.
Now, two names, one without an explicit disk, the other
with. Just for fun, I'll log in drive B:
A>b:
B>a:q foo . zo t b :ho ly . cow
CB06

0050 00464F4F I T FOOI
0060 20202020 205A4F54 00000002 02484F4C I ZOT HOL |
0070 59202020 20434F57 00000000 00DB03C4 |Y COW I
0080 1320464F 4F2E5A4F 5420423A 484F4C59 | . FOO.ZOT B:H0LY|
0090 2E434F57 OO636F77 0D0A1A00 00000000 | . COW. cow I

Now, let's try passing a tab as the delimiter: @-sign tab:
A>q f i l ename @
f i l ename @ ?

CP/M-80 rejected it, typing back the name, the @, and the
tab, followed by a "?".

I got around that by simply specifying a single "." as the sec-
ond filename. Then the "@-sign tab" may be typed without
CP/M-80 trying to make a filename out of it:
A>q f i lename . @

0050 D3F8E3E3 DBFD07DA 5400D500 0046494C I T F ILI
0060 454E414D 45202020 00000002 00202020 |ENAME I
0070 20202020 20202020 00000000 00DB03C4 | I
0080 0E204649 4C454E41 4D45202E 20400900 | . FILENAME . @. . |

That was easy. I can just scan 81H on for my "@", and I'll find
my "@-sign tab" at 8DH.

The first name, with no explicit disk, resulted in OOH at 5CH.
The second, with its explicit disk, resulted in 02H at 6CH.
Nothing was affected by the fact that I had logged in B first,
nor by my executing Q.COM off the A: disk. Byte 5C was
still a 00, meaning "the currently logged in disk".

What if a name is too long? It is truncated:
A>q long . f i l e type

0050 004C4F4E I .LON|
0060 47202020 2046494C 00000002 00202020 |G FIL I
0070 20202020 20202020 00000000 00DB03C4 | I
0080 0E204C4F 4E472E46 494C4554 59504500 | . LONG. FILETYPE. |

Note how "filetype" was truncated and placed in the FCB as
'TIL".

Now for an oddity: Placing certain special characters in a
name has interesting results. Just as tells it to stop scanning
the filename, and start looking for the filetype, several other
special characters tell it to stop scanning all together.
A>q th i s= tha t

How about "*" or "?" in filenames? Well, "?" gets passed on as
is, but "*" gets expanded into enough "?" to fill the remainder
of the filename or filetype:

A>q a*. com

0050 00413F3F | TA?? |
0060 3F3F3F3F 3F434F4D 00000002 00202020 |?????C0M.......... I
0070 20202020 20202020 00000000 00DB03C4 | I
0080 06202A2E 434F4D00 30303030 30303030 | . * .COM. 00000000 |

0050 00544849 | .THI I
0060 53202020 20202020 00000002 00202020 |S I
0070 20202020 20202020 00000000 00DB03C4 | j

(continued next page)
Lifelines/The Software Magazine, Volume III, Number 4 33

It is considered good programming to check a filename for
question marks before accepting it and going on with the pro-
gram. Few early CP/M Users Group programs do this, which
can have bad effects. The IDUMP program which I'll intro-
duce in this tutorial, will screw up a CP/M-80 1.4 directory
entry if something like "IDUMP *.ASM" is typed. The
"????????.ASM" will match the first ".ASM" file, but if the
file is over 16K, CP/M-80 will go back to the directory,
overlaying the real name with "????????"! (CP/M-80 2.x
doesn't update the directory if it detects that only reads have
been done).

Enough on FCBs. Let's get to the meat of CP/M-80 file I/O.
But first, we'll discuss the EQUates to be used as a consistent
way to reference things.

(Specifically, if no filename was entered, the directory pro-
gram fills the filename and filetype with all "?". Then, they do
the "search first" and a bunch of "search next"s. On both
search types, the value passed back in A helps find the file. If
A is not OFFH (indicating no match), then A indicates the
relative position of the file in a directory sector.

CP/M-80 1.4 passed back the actual directory position, i.e.
00 for the first file, up to 3F for the 64th. This doesn't work for
CP/M-80 2.x, because it supports much larger disks. A disk
with 500 directory entries would have one which was number
255, i.e. OFFH, so you would think you had not found it in a
directory search. And, there is of course no way to indicate a
number larger than 255 in A, which is only 8 bits.
The solution was to pass back only the position of the direc-
tory entry within its sector, rather than within the entire
directory. Thus under CP/M-80 2.x, A contains either 00, 01,
02, or 03 (or OFFH) on a search first or search next. A routine
which will work for both CP/M-80 1.4 and CP/M-80 2.x
needs only "ANI 3" after the search (after testing for OFFH of
course), to make sure a value between 00 and 03 is used.
The 128-byte buffer at 80H is used for search first and search
next, so you can use the 00-03 value of A to find the file.
Here's how:

BDOS Equates

Of the table of equates I presented in the tutorial in July
Lifelines, this one will deal with:
OPEN EQU 15 ;0pen a file, FCB in (DE)
CLOSE EQU 16 ;Close a file, FCB in (DE)
SRCHF EQU 17 ;Search for first file, FCB in (DE)
SRCHN EQU 18 ;Search for next file, FCB in (DE)
ERASE EQU 19 ;Erase a file, FCB in (DE)
READ EQU 20 ;Read a file sector, FCB in (DE)
WRITE EQU 21 ;Write a file sector, FCB in (DE)
MAKE EQU 22 ;Make a new file, FCB in (DE)
REN EQU 23 ;Rename a file
SETDMA EQU 26 ;Set the DMA (Disk I/O) addr. (DE)

;Here are a few other equates which you will find useful:

BDOS EQU 5 ;entry point to BDOS
FCB EQU 5CH ;Main file control block address
FCB2 EQU 6CH ;Second file control block address
FCBEXT EQU FCB+12 ;Extent byte of first file
FCBRNO EQU FCB+32 ;Record number in first file

mvi c,srchf ;request search
next Ixi d ,fcb ;point to FCB

call bdos ;go do it
inr a ;set zero if it was ff
jz nofile
dcr a ;un-do the inr
ani 3 ;make it 00-03
add a ;double it
add a ;again
add a ;again
add a ;again
add a ;again
adi 80h ;now x 32 4- 80h
mov l,a ;set up hl to point
mvi h,0 ;to the entry
inx h ;point to filenameRecall these BDOS calls work by placing the function in C,

and the parameter (address, character, etc) in DE. For
CP/M-80 file I/O, DE must point to an FCB. It need not be
the one at 5CH.

Searching For Files

You can check on whether a file exists by searching for it.
CP/M-80 supplies two search types: "first", and "next".
Why? Because you may be searching for, say, "* .COM". Do-
ing a "search first" returns the first ".COM" file found. Per-
forming a "search next" returns the next. Repeated calls to
"search next" return the subsequent ones, until no more can
be found.

The logic was simple: we have the relative position in the
directory (00-03), but each entry is 32 bytes long. Just multi-
ply the 00-03 by 32 (by doubling it 5 times), then add 80 to
this. If you want to get the next file after processing the first,
just:

mvi c,srchn ;search next
jmp next ;look for it in directory

This will loop back, and use the same code as search first.

Making Files

For a file to exist on disk, it must be in the directory. To place
a file in the directory with an assembler program, you make
the file with BDOS function 22. CAUTION: you must be sure
not to make a file that already exists. If you do, you will have
a useless duplicate directory entry. Standard practice is to
either erase the file first, or search for it, and if you find it, ask
the user if it may be erased.
Let's take the first case, where we erase any possible old file,
then make a new one:

Here is how you find out whether a file exists: (1) place its
name in an FCB somewhere. This may be as simple as having
the filename in the command line, so the default FCB at 5CH
is filled; (2) point DE to the FCB; (3) load C with the "search
first" function; (4) Call BDOS; (5) test the accumulator to see
if it has OFFH in it indicating no file found:
Ixi d,fcb ;point to FCB
mvi c,srchf ;request search
call bdos ;go do it
inr a ;set zero if it was ff
jz nofile

Ixi d,fcb ;point DE to FCB.
mvi c,erase ;load function to C
call bdos ;erase the file

Ixi d ,fcb ;point DE to FCB.
mvi c ,make ;load function to C
call bdos ;make new file

Search next is done similarly, simply changing the function
passed in C.

How do directory programs work? Well, they start typically
with an FCB containing all "?", so any file will match. If the directory should happen to be full, CP/M-80 returns

34 Lifelines/The Software Magazine, September 1982

You'll note I didn't do anything with sector numbers or ex-
tents. CP/M-80 is handling these for me. If I read past sector
128, CP/M would automatically increment the extent num-
ber, and open the next extent.

CP/M-80 works similarly for writing, making new extents
for you after you have made the first. Thus it is possible for
write to return an OFFH, meaning it couldn't find room in the
directory for the additional extent of the file.

OFFH in the accumulator, so the easiest test for this problem is
to INR A to make it OOH, and JZ to an error routine:
inr a ;no dir. space?
jz dirfull ;yes, go to error.

This placed an empty entry in the directory - empty meaning
only the filename and type, but 00 for length and disk block
locations.

We didn't need to set up this FCB if it was the system FCB
filled by CP/M-80 on a command. As you can see from the
Q.COM examples above, CP/M-80 filled the extent byte and
record count with OOH.

(Aside: It is actually the Console Command Processor, CCP,
that is filling the FCB. There is no general facility anywhere
else in CP/M-80 itself, to fill a file control block; if you want
to fill one under program control, such as from a reply to a
message given in your program, quite a bit of code is re-
quired. You must translate the name to upper case, scan for a
possible disk [e.g. A:], place the filename in the FCB, left jus-
tified and padded with spaces to 8 characters. Similarly the
filetype [if any] must be placed in the proper FCB location.) If
you are working with an FCB other than one the system
filled, you would have to zero the extent reserved bytes and
sector number before making the file.

Closing Files

If you have written a file, the FCB and its disk block pointers
are only in memory, and not on disk, so if you were to end
your program, CP/M-80 wouldn't know where the file was.
Therefore, close the file when you have finished writing it.
Again, OFFH is an error, in this case, "unable to find matching
directory entry"; it shouldn't occur unless you forgot to
originally make the file:
Ixi
mvi
call
inr

jz

d.fcb
c,close
bdos
a
badclos

;point DE to FCB.
;load function to C
;close the file
;close ok?
;no, go to error.

In CP/M-80 1.4 and 2.x, you need not close a file which you
have only read. However, MP/M , with its multi-program-
ming ability, keeps closer track of open files, and does require
you to close a file so it knows it is again available. Thus it is
not a bad idea to close even files you have read.

Opening Files ____________________________
To do reads or writes to a file, the file must be open. The make
function opens a file, so if you have just executed a make, you
don't have to do an open. If you did do an open, it would
merely obligingly find the same empty directory entry the
make function had just put in the directory.

Erasing Files

To delete a file under program control, point DE to the FCB
containing the filename (or specification, with "?" allowed),
load C with the erase function (19), and call BDOS.

Ixi d,fcb
mvi c,erase
call bdos

To read a file, don't perform the make function on it, since
some previous program did that. Just open it. Similar to the
make function, OFFH returned in A signals an error, in this
case, that the file was not found:
Ixi d,fcb ;point DE to FCB.
mvi c,open ;load function to C
call bdos ;open for reading
inr a ;no such file?
jz nofile ;yes, go to error. So much for "bits and pieces". Next month, let's put this

together into a sample program.

Listing 1
Q.HEX

:1001000021000039226C02316C023A5D00FE40CAC7

:10011000AB012A060025CD3201CD9C01CD9C012LE9

:100120000000CD3201CD60012425CA22012A6C02D3
:10013000F9C97CCD4C017DCD4C01CD3D013E20C5A2
:10014000D5E55F0E02CD0500E1D1C1C9F51F1F1F26

:100150001FCD5501F1E60FC69027CE4027C33F01C2

:10016000E57ECD4C017DE6033CFE04CC3D017DE601

:10017000073CFE08CC3D01237DE60FC26101CDA600

:1001800001E17EFE20DA8D01FE7FDA8F013E2ECD69

:100190003F01237DE60FC28201CDA6013E0DCD3F7A

:1OO1AOOOO13EOAC33FO13E7CC33FO11L5EOO21OOB6

:1001B000001A13FE20CACA0129292929FE41DAC3DF

:1001C00001D607D630856FC3B101CD3201CD6001B4

:1001D000CDDE01CA2D017CB5C2CA01C32D01E50ED9

:1OO1EOOOOBCDO5OOE1B7CAO6O2E5OEO1CDO5OOOEF4

:1001F00001FE13CC0500ElFE03CA2D01FE0DCA2D40
:0802000001FE20C024C93CC925

:0000000000

Reading and Writing Files
Reading or writing sectors to the file is very simple. Unless
you tell CP/M-80 otherwise, the 128 bytes at 80H are used for
the sector read or written. I keep saying "sector", because
reads and writes are done at the sector level. You will need
more complex subroutines if you want to read or write some-
thing other than a sector.
Read and write return a OOH in A if it was successful. Read
returns an 01H if end of file is reached. Write returns an 01H if
there was an error.

Ixi d,fcb ;point DE to FCB.
mvi c,read ;load function to C
call bdos ;read a sector
ora a ;error or end of file?
jnz ckeof ;yes, go check it.

;got read error - test for end of file

ckeof dcr a ;was it eof? (=1)
jnz rderr

;eof.

Lifelines/The Software Magazine, Volume III, Number 4 35

1JN UJL U JJE in BASIC-80
Bob Kowitt

One of the complaints against BASIC as a computer language
has been the constraint of line numbers. New versions of the
different dialects of BASIC have been Created over the years
to remove some of these constraints. For example, the ability
to renumber programs, still lacking as an integral part of
many BASICs, is almost universal. In BASIC-80, the ability
to renumber selectively from any point to the end by any
increment desired has permitted programmers to open up a
program, and make changes while keeping subroutines
located in one section and the main thread of the program in
another.

There is a feature of Microsoft's BASIC compiler that makes
it easier to consider routines by name instead of number. Of
course, the phrase used was easier to consider. One still can-
not, as in COBOL, Pascal or PL/I:

DO procedure

where procedure' is a name or label attached to the procedure
to be implemented.

This technique is a modification of a scheme I have been using
for some time with the BASIC-80 interpreter, written up in
S-100 Microsystems magazine this spring.

While using the interpreter, I have been storing subroutines
and restricting them to line numbers between 200 and 950.
There can be no duplication of line numbers in these sub-
routines, so when I use the BASIC80 command MERGE, the
desired subroutine can be pulled in without danger of over-
writing any other. By maintaining a standard jump table in
the location 100 - 199, the program can GOSUB to this loca-
tion and branch from there to the subroutine needed. Lines 1
-100 are reserved for introductory remarks and house-
keeping.

The space between lines 950 and 1000 is used as an area for
jump vectors when chaining between modules in a program;
the chain must enter at various points of this module. Thus, if
the module must be renumbered, lines 1 - 1000 can remain un-
touched and the jump destination can be renumbered with-
out altering the re-entry point.

Since I now use BASCOM-80, this same library of subrou-
tines is written on a disk with an editor such as PMATE or
WORDMASTER. However, for this purpose all line numbers
are eliminated. This form allows the ASCII coded subrou-
tines at compile time to be called in with % INCLUDE. One of
the immediately perceived advantages of this method is
shorter source code.

In the example given in figure 2, the subroutine takes a name
in the form LASTNAME, COMMA, FIRSTNAME and con-
verts it to FIRSTNAME, SPACE, LASTNAME for proper

printout or display. This subroutine is saved on the disk as
SWAPNAME. BAS, with the 'A' toggle to save it in ASCII
rather than the Microsoft token form:

SAVE "SWAPNAME", A

According to the restrictions of BASIC, both interpreted or
compiled, my code must GOSUB to a line number. In this ap-
plication, however, it is not necessary to write out all the code
at that line number location. Programming with the editor, a
dummy line number is written with a REM and a description
of the function, following it on the next physical line, with
%INCLUDE subroutine. On the first line of the %INCLUD-
Ed subroutine is a REMark stating the name of the subroutine
for self-documentation purposes.

Figure 1
240 GOSUB 510

510 REM switches last name,first name
% INCLUDE SWAPNAME

This results in compiled code that works as if it had been the
same as figure 2, even though it is not in the original source
code.

Figure 2

240 GOSUB 510

510 REM switch last name,first name
SWAPNAME - name set to E$ & has comma between name

X=INSTR(E$,“ ,") : IF X=0 THEN RETURN
E2$=LEFT$(E$,X-1):E1$=RIGHT$(E$,LEN(E$)-X):E$=E1$+" "+E2$

RETURN

The subroutine must have been saved in ASCII with no line
numbers. It is very important that it be written in a self-con-
tained format, with no branches via GOTO or GOSUB.
Following the techniques of structured programming, be sure
to allow only one exit from the subroutine, the final
RETURN. With judicious use of FOR. . . NEXT loops and the
WHILE. . .WEND structures, it is possible to avoid branching
with the subroutine. Any branches via GOTO or GOSUB to
another line number would make the subroutine dependent
on the location within the program and would defeat the pri-
mary purpose of this method.

BASCOM-80 now must compile the program using the /C
compile switch, which tells the compiler to ignore line num-
ber constraints. Line numbers can be in any order, or the pro-
gram may have none at all except as addresses for branching.
I employ so many switches in my compiling that I use a sub-
mit file to do the work. (See Fig. 3.) Actually, the program
could have branches within my subroutine, but I would run

Lifelines/The Software Magazine, September 198236

with COMMON, different sub-groups of modules within the
large program may not require the same COMMON defini-
tion. It is easier to re-read the system data from a disk file each
time a COMMON definition is changed.

In addition, many times during the creative process, the pro-
grammer may decide to change the system control file fields.
After modifying the read line once, each module can be re-
compiled without re-editing the source code in all modules.

the risk of duplicating a number used elsewhere in the pro-
gram. I haven't tried it but I imagine that the compiler would
give me a DUPLICATE LINE NUMBER ERROR under these
conditions.

Figure 3

PIP A: =B : $1 . BAS [V]
BASCOM
=$1 /C /Z /X/E /N

L80 $1, $1 /N/E
PIP B : =A : $1 . COM [VO]
ERA $1 .*

;move the sou rce f i l e from B: to A:
; i nvoke the compi l e r
;Z = Z80,X & E fo r on e r ro r cod ing ,
; N i nh ib i t s symbo l i c gene ra t i on
;N saves the COM, E ex i t s to CP/M
;move the ob j ec t code back to B
; e r a se REL f i l e from A Figure 4

Of course, working this way precludes testing the program
with the interpreter, a restriction programmers in other
languages have had to live with. BASIC programmers, at this
level of sophistication, will have to trade off one advantage
for another.

OPEN " I " ,# ! , "SYSCTRL.DAT"
INPUT #1 ,CLSCREEN$, HOMES, EOLINE$, EOSCREEN’S, LEADINS, OFFSET, XY

Now after further work, should a decision be made to in-
clude, for example, screen size data, the file "SYSIN.LIB" can
be modified with the additional fields, SCCOL, SCLIN.

Obviously there is some time saved with this means of
coding. However, with a single module program, the time
saved is minimal. Where the technique shines is in a multi-
module program. The command % INCLUDE has another
advantage. Often a line of code is used in each module. These
modules are called in at runtime. The line of code can be
%INCLUDEd in each module when it is compiled. Should it
be necessary to alter a line in one of subroutines, it saves time
and trouble to recompile the appropriate modules after only
one modification to a LIB file.

I use a file that I call my system control data file. In this file are
the clear screen code, cursor addressing strings, end-of-line
code and any other terminal dependent data that was filed at
setup time. While it is true that this data can be CHAINed

Figure 5

OPEN " I " , #1 , " SYSCTRL.DAT"
INPUT #1,CLSCREEN$, HOMES, EOLINE$, EOSCREEN$,LEADIN$, OFFSET,

XY, SCCOL, SCLIN

Then %INCLUDE "SYSIN.LIB" will read it where it belongs
at compile time in each of the modules being compiled with
SUPERSUB. Total writing time - five minutes instead of two
hours to edit a total of ten modules.

FffiER feCDCR f&R ouR
falNIER E> rrpRudzxJS BUT X THlNk

trS A LmlE" -po fbuERRJU- —

Lifelines/The Software Magazine, Volume III, Number 4 37

Feature

Z80 Programming Tutorial, The
Architectural Wonders of the Z80

Kim West DeWindt

Welcome to the wonderful world of silicon. This month, I am
delving into the strange new world of the Z80's insides. Much
of the Z80 looks just like the 8080. There are, however, a few
key additions that can make your life, and your program-
ming, easier. If you do not know about some of the Z80's in-
ternal quirks, some of your 8080 programs may produce
bizarre results, if they run at all. The internal status of the
Z80, represented by the state of the flag register, can vary
from the state of the Program Status Word (PSW) of the 8080.
Conditional tests and jumps that worked with an 8080 may
send your Z80 into never-never land.

Let us start with the basic assumption that you have read
either Ward Christensen's tutorial or Intel's data book and
know something about the internal structure of the 8080. You
should be familiar with the 8080's registers, and know the dif-
ference between an accumulator and a general purpose regis-
ter. (You can't do arithmetic or logical operations in a general
purpose register. Those functions are performed in and by the
accumulator.) You should also know about the different types
of address modes. Below is a summary of address modes. In
the examples, the opcodes on the left are Z80 mnemonics, the
underscored opcodes on the right are 8080 mnemonics.

register addressing
(also called implicit or implied):
the instruction implies an internal register

ex: CP B CMP B ;compare B with the
accumulator

indirect addressing:
the contents of a register pair points to a memory location

ex: LD A,(BC) LDAX B ;BC addresses a mem-
ory location

immediate addressing:
data used by the instruction is in the byte immediately
following the instruction

ex: LD A,23 MVI A,23 j;load A with the value
23

absolute addressing:
the two bytes of data following the instruction are an ab-
solute address pointing into memory

ex: JP 2354 JMP 2354 Jump to address 2354

relative addressing:
the byte of data following the instruction is an offset that is
added to the program counter (PC) to provide the next
program address. In the Z80, this is the Jump Relative
command

ex: JR 56 no 8080 opcode ;56 is added to the PC

indexed addressing:
the byte of data immediately following the instruction
is added to an index register, this composite address
points to the data that is used by the instruction

ex: LD A,1X4-5) no 8080 opcode
;add 5 to the index
register (IX), get the
data at that location
and put it into A

bit addressing:
the opcode specifies which bit of the addressed byte is to
be used for data.

ex: SET 3,B no 8080 opcode ;set bit 3 of register
B equal to 1

Some of these modes may be new to 8080 users. Later on, I
will go in the details of relative, indexed and bit addressing.
Enough about assumptions, let's move on to some of the in-
teresting features of the Z80.

The Prime Registers

The designers at Zilog were not content with the normal com-
plement of registers found in the 8080. So they doubled the
number of general purpose registers in the Z80. This dupli-
cate set of registers eases the design of systems that use single-
context switching, background and foreground program-
ming (multi-user systems), and single-level interrupt systems.

The Z80's general purpose register set consists of a principal
set (A, B, C, D, E, H, L, and F), and an alternate set (desig-
nated by the prime symbol, e.g. A'). The F register consists of
the internal status flags and corresponds to the PSW of the
8080. The register map in Figure 1 shows their layout.

All of the general purpose registers are eight bits (one byte)
wide. The register pairs BC, DE, and HL form sixteen bit reg-
isters (one word). The interrupt vector and memory refresh
registers are eight bits - more about these two later. The four
remaining special purpose registers are all sixteen bits wide.
The two new registers, IX and IY, are used in the index ad-
dressing mode.

The prime registers (the alternate set) look great on paper.
However, they are not true registers. They really consist of a
small bank of internal RAM that is used to store one operat-
ing state of the Z80's main registers. By using this alternate set
of registers, the programmer can save the internal context of a
program and switch to another by swapping the current state
of the main registers with the old values of the alternate regis-
ters. Unfortunately, the programmer can only see' the con-
tents of the main register set. This ability to quickly swap one

38 Lifelines/The Software Magazine, September 1982

bit three; it does not flag the borrow condition.

The Subtract flag (S) is used in conjunction with the H flag. It
identifies whether the previous instruction produced a carry
or a borrow. The states of the S and H flags determine the
kind of correction that has to be made to a BCD integer.
There is no comparable flag in the 8080.

The Interrupt Register

state of the Z80 with another is useful in simple interrupt
schemes and timing loops, when the Z80 must leave the main
stream program and process interrupts or real time functions.
However, the programmer has to be careful when writing
programs that handle multiple interrupts. The Z80 can only
remember two states. If, in the process of handling one inter-
rupt, another interrupt arrives, and the programmer gleefully
swaps registers again, she or he is back in the realm of the
main program. There go all those carefully saved register
states, and nobody knows where the Z80 goes.

The Z80 has a special set of instructions which exchange the
contents of the main register set with the contents of the alter-
nate register set. EX AF exchanges the contents of the AF and
A'F' registers. EXX exchanges the contents of the remaining
registers (BC, DE, HL with B'C', D'E', and H',L'). In the pro-
gramming section, I will go into more detail on how to use the
exchange instructions, and how not to get lost in multiple in-
terrupt systems.

The Flag Register

The I register or interrupt vector is used in interrupt mode 2.

(A quick word on interrupt modes - the Z80 has three differ-
ent interrupt responses. In the first mode [IMO], the Z80 ex-
pects the interrupting device to place a one byte instruction
on the data bus, just like the 8080 interrupt response. In the
second mode [IM1], the Z80 automatically jumps to location
38 hex [like a RST 7 for the 8080]. The third mode [IM2] uses
the I register to help provide a jump address. Look for more
details on interrupt responses later in this section.)

In interrupt mode 2, the Z80 looks for a byte of data from the
interrupting device. It assumes that this is the low byte of an
address. The I register provides the high byte of this interrupt
vector address. Once the Z80 has formed this interrupt vec-
tor, it goes to that location in memory and treats the data
stored there as an address. This is also known as Very Indirect
Addressing. The equations below show how this works.

I register + data from intrpt device = Intrpt vector

Interrupt vector points to memory location IV hi and IV low.

The PC is pushed onto the stack and the address located at IV
hi and IV low becomes the new PC.

high / low bytes
(I register)(data) = sixteen bit vector (IV) = >

= > (address low byte) = low byte of the program counter

sixteen bit vector + 1 (IV + 1) = >
= > (address high byte) = high byte of the program counter

One word of caution - the data byte that is sent by the inter-
rupting device must be an even byte (bit A0 must be zero).
The Z80 is generating a sixteen bit vector that points to a six-
teen bit address which resides on an even boundary. Let me
repeat that: the composite interrupt vector must be an even
address, therefore its low byte must be even.

The interrupt register is loaded from the accumulator. The
contents of the I register can be read by down-loading it back
into the accumulator. The instructions look like this:

LD I, A ;load I with contents of A
LD A, I ;load A with contents of I

The Refresh Register

The F register is the collection the internal flags of the Z80. It
is equivalent to the PSW of the 8080 - well, almost equivalent
- the Z80 has one more flag than the 8080. There are six bits
within the flag register, one more than the 8080 has. Four of
them are testable (Carry, Zero, Negative-sign, and Parity /-
overflow). The remaining two flag bits (Half-carry and Sub-
tract) are for internal use and cannot be tested by the pro-
grammer. I will outline all of the flag functions here, then
spend more time talking about their operation in the pro-
gramming section.

The Carry flag (C) of the Z80 is similar to the Carry bit of the
8080. It contains the highest order bit of the A register after an
add, subtract, shift, or rotate.

The Zero flag (Z) is set whenever the result of an accumulator
operation is zero. If the result is not zero, the flag is cleared.
Note that loading a zero into the A register does not set the
zero flag. Only the arithmetic and (some of) the logical opera-
tions change the state of this flag.

The Negative-sign flag (N) is set if the result of an arithmetic
or logical operation is negative. The seventh bit of the accu-
mulator is the sign bit. If it is one (negative) the N flag is set. A
zero in the accumulator (positive) clears the N flag.

The Parity /overflow flag (P/O) is a dual purpose flag. If a
logical operation produces a result with even parity, the par-
ity bit is set. If the result has odd parity, the bit is cleared. If an
operation uses signed two's complement arithmetic, this bit is
set when an overflow occurs. It is cleared if the operation did
not overflow. This is an extension of the 8080's parity bit. If
any of your old 8080 programs test this bit, you should make
sure that the test occurs only after a logical operation (the
parity check). Testing this bit after arithmetic operations may
cause inexplicable effects.

The Half-carry flag (H) is set if there is a BCD (Binary Coded
Decimal) carry or borrow from the lower nibble of the accu-
mulator. The state of this flag is used internally when the Z80
is doing decimal adjust operations (the DAA instruction).
This flag is an extension of the Auxiliary Carry bit of the
8080. The Aux Carry bit signals the presence of a carry out of

When the Z80 first came out on the market, dynamic RAM
was expensive, and static RAM was very expensive. In order
to simplify Z80's interface to dynamic RAM, Zilog added a
refresh register and a special refresh cycle. The refresh register

(continued next page)
Lifelines/The Software Magazine, Volume III, Number 4 39

is a counter that is decremented after every Ml cycle. (An Ml
cycle is an instruction fetch cycle. The Z80 differentiates be-
tween a normal memory read cycle, and an instruction fetch
cycle. There is a special line, Ml*, that goes low during an
Ml cycle. There is no equivalent cycle in the 8080.) At the end
of an Ml cycle, the contents of the refresh register are sent out
on the lower address lines. At the same time, the RFSH* (re-
fresh) and MREQ* (memory request) lines go low to indicate
to external circuitry that a refresh cycle is in progress. This re-
fresh address can be sent to the local dynamic RAM and used
as a refresh address. Since an Ml cycle comes at least once
every four cycles, the RAMs will be adequately refreshed.
This scheme works with the Z80 and Z80 A, which run at 2.5
and 4 MHz respectively. The new Z80 B runs at 6Mhz and the
refresh pulse, provided by the Z80, is not long enough to re-
fresh RAMs that are currently available. For slower systems,
using slower RAMs, the refresh register and refresh cycle cut
down on the number of parts needed to interface with dy-
namic RAMs.
The refresh register is loaded from the accumulator and its
contents can be read back into the accumulator. These in-
structions are as follows:

LD R,A ;load R with contents of A
LD A,R ;load A with contents of R

Notice that if the R register is read randomly, or after a long'
time, its contents will be unknown to the programmer (Eu-
reka, a pseudo random number generator within the bowels
of the Z80). If used carefully, the R register works admirably
as a random number generator. If you want to try using the
refresh register for this purpose, keep the following in mind:

Don't read R inside a small loop and expect it to be ran-
dom. Remember, it is decremented after every instruc-
tion fetch. If there are only seven instructions in a loop,
R will be smaller by seven every time around, this is not
even considered quasi-random.

Actually, the above consideration holds true for large pro-
gram loops. If your program requires a mathematically ran-
dom number, read R at random' intervals. If your program
branches here and there, gets periodic interrupts and waits
for console I/O, the contents of R will appear quite random.

The Index Registers, IX and IY

The Z80 adds a new mode of addressing to those available in
the 8080. To implement this mode, called index addressing,
index registers were added. These registers are sixteen bits
wide (one word) and they can be loaded, stored, incre-
mented, decremented and exchanged with data in memory or
with some of the other registers. Opcodes that specify index
addressing are two bytes long, followed by a one byte offset
(the offset may be zero, but that zero still takes up a memory
location). This mode is not always space efficient, but now
that memory is cheap, index registers make it easy to code
and use translation tables, jump tables, and the like.
Until we get to the section on the Z80 instruction set, see Fig-
ure 2 for a partial list of 8080 commands that can now be
extended to include the index registers. In the programming
section, I will give some programming examples that use
indexed addressing techniques.

Interrupt Modes

The Z80 handles interrupts in a slightly different fashion from
the 8080. In the 8080, different input lines force the 8080 to

40

jump, call, or restart. The location of the jump or restart is de-
termined by the line that requested the interrupt. One of the
lines, TRAP, cannot be ignored. The rest of the interrupt lines
can be internally disabled (masked off) by software. The Z80
has only two interrupt input lines, INTR* and NMI*. NMI
(Non-Maskable Interrupt) is like TRAP. It cannot be shut off
by the software. A low level on the NMI* line forces the Z80
to jump to location 66 hex. INTR*, like INTR and the RST
lines of the 8080, can be masked off. If INTR* is disabled (by
the instruction DI), a low level on the interrupt line is ignored
by the Z80. If interrupts are enabled (by the instruction El), a
low level on the interrupt line forces the Z80 into one of three
interrupt modes. (Interrupts are recognized after the end of
the current instruction cycle). Now, about those three inter-
rupt modes.

Mode 0 (IMO):
This mode was designed to be compatible with the 8080 inter-
rupt mode. After acknowledging an interrupt, the Z80 ex-
pects to see a one byte instruction (usually a Restart instruc-
tion) on the data bus. The Z80 then performs this instruction
six times, just to make sure that it does it correctly, and con-
tinues on its merry way.

Mode 1 (IM1):
This mode is similar to the NMI response. The Z80 does not
look for any data from the interrupting device. It jumps
directly to address 38 hex. This mode is handy if the interrupt
is coming from a passing clock pulse or other non-intelligent
device.

Mode 2 (IM2):
This third mode is designed to be used with the family of
Zilog peripherals. Actually, it works very well with any inter-
rupt controller that can store address locations, and send se-
lected data to the Z80. This mode takes advantage of the I
register, using its contents as the upper half of an interrupt
vector address. The interrupting device must provide the
lower half of this address. Interrupt mode 2 gives the pro-
grammer a lot of flexibility. Your interrupt routines are not
confined to certain pages or locations in memory. Interrupt
handling routines can be anywhere. By manipulating the in-
terrupt register, the same device can send the Z80 to any num-
ber of different interrupt routines. The final destination
would depend on when the interrupt occurred, and what was
in the I register.

In the programming section, there will be examples of inter-
rupt vector tables, and how to use the variable contents of the
I register to send your Z80 zipping throughout memory. In
addition, I will spend some time explaining how to keep track
of where your Z80 has zipped and how to get it back to your
original location, in it's original state.

It is up to the programmer to set the interrupt modes of the
Z80. Initially, the Z80 is in mode 0. There are three instruc-
tions that change the interrupt mode. These are simply:

IMO ;set interrupt mode 0
IM1 ;set interrupt mode 1
IM2 ;set interrupt mode 2

The interrupt mode can be changed at any time. I strongly
recommend that you disable all interrupts before changing
the mode. If an interrupt arrived while the response mode
was being changed, all hell could break loose.

Lifelines/The Software Magazine, September 1982

Enough on the architecture on the Z80. Next time I will talk
about Zilog's mnemonics. The instruction opcodes (i.e. the
hex values of an instruction) are the same for the 8080 and the
Z80, but the names of the opcodes have been changed. In this
section I gave some examples of instructions in both Z80 and
8080 mnemonics. In the next section, I will give you a
8080/Z80 opcode translation table. Once you get used to
reading Zilog mnemonics, I think that you will find them
quite logical.

Because the Z80 instruction set is a superset of the 8080 in-
struction set, there will be some additional instructions to
learn. In some cases, Zilog made use of the undefined one
byte values in the 8080's instruction table. When they ran out
of single byte instructions, they added a few double byte in-
structions (e.g. the block move instructions, and some of the
instructions that use the index registers).

If anybody out there has any specific questions about the Z80
architecture, or would like to see more detailed information
about its internal structure, drop a line to me care of Lifelines/
The Software Magazine. If it appeals to the general reader, I
will cover it in a future installment. If it is a question about a
nitpicking detail, I will send a personal reply.

or system8 sa 80 * 1

igiake J

A language for creators.

STOK PILOT can make your final
product more saleable and keep it sold

This unique langauge allows straight-
forward creation of a friendly interface
between novice users and CP/M for
any program application Using STOK
PILOT, a software designer can easily
produce a hand-holding menu-driven
front-end supervisor with built in tutorials
to help guide the novice end-user through
a complex application The actual end-
user does not have to know STOK PILOT.

STOK PILOT opens the door for
companies to evolve structured ap-
proaches to meeting their own training
needs

STOK PILOT can simulate any
application program for the purpose of
tutoring the user. This allows training and
guidance without the necessity of working
on and possibly damaging live data. Then,
when the user is ready, STOK PILOT can
call the actual application program.

STOK PILOT is a superset of the PILOT
CAJ language. STOK PILOT was designed
with tbe syntax and structure of PILOT
because PILOT is an easy to use and easy
to learn language.

STOK PILOT can be thought of as an
interactive SUBMIT facility. One program
written in STOK PILOT can control an
entire session without ever entering
cumbersome CP/M commands. The
commands can be dynamically formed at
run time by STOK PILOT.

Menus can be created that will allow the
user to select various programs. STOK
PILOT can chain to any program or utility
written in any language, leaving the entire
TPA available, and regain control when the
other program ends.

STOK PILOT can check for the existence
of a file before it actually calls the application
that needs it Let STOK PILOT see to it that
the proper disks have been inserted by the
user

The package includes a well written and
indexed 75 page manual. All the instruc-
tions are explained in full detail Many
useful programming examples are also
included.

Complete 8 inch CP/M format disk and
manual retails for $129.95. The manual is
available alone for $14.95 and is deductible
from a future order. NY residents please add
sales tax.

Z80 REGISTER CONFIGURATION
GENERAL PURPOSE REGISTERS

main register set alternate register set

A (acc.) F (flags)

B C

D E

H L

A' (acc.) F' (flags)

B' C'

D' E'

H' L'

SPECIAL PURPOSE REGISTERS

Index register IX

Index register IY

Stack Pointer SP

Program Counter PC

Figure 1
Toll free order line: (800) 431-1953 ext 183

In NY (800) 942-1935 ext 183

C O D. - Mastercard - Visa
NOTE: In all instances, IX can be replaced by IY

Z80 mnemonics 8080 mnemonics
LD IX,(nn) LIXD (like LHLD)
LD (nn),IX SIXD (like SHLD)
LD IX,NN LXI nn
LD A,(IX + d) LDAX IX + d
LD (IX + d),A STAX IX + d
INC IX INX IX
DEC IY DCX IX

Stok Software Inc
1 7 West 1 7th Street
New York, NY 10011
(212) 243-1444

Figure 2 Dealer inquiries invited
CP/M is TM ot Digital Research

Lifelines/The Software Magazine, Volume III, Number 4 41

a inion
Letters

Some Comments On
dBASE

with these little fellas for a number of
years (actually their big brothers) and
after I got the command module to work
and looked at a report that showed the
interest, principle, etc. for a short five
year loan, I checked some of the calcu-
lations using pencil and paper and lo
and behold the numbers didn't quite
match! After redoing the calculations
on two other calculators I began to
smell something rotten in dBASE.

As you can see from the listing, when
the "?" command is used, and real
numbers are used to do the calculation,
the result comes out correct. But, when
you try to use memory variables to do
calculations, the precision is certainly
less than desirable! The other thing I
like is that a different result is returned
depending if you multiply i*p or p*i.

When I discovered this problem, I gave

Ashton-Tate a call and talked to them.
They felt that it was indeed a problem. I
had asked them to call me back after
they discussed the problem with the
"writer" to see if there was an alternate
solution to performing these calcula-
tions. Three weeks and another phone
call later, it seems there was little or no
thought given to this problem. (Oh,
well, you pay your money, you take
your chances.)

Other problems I have come upon are
the set alternate process not working as
described in the manual or even Soft-
wareBanc's user manual. Ashton-Tate
said it was a known problem and that
the process shouldn't even be in
dBASE. After a bit more coaxing, they
also said there were problems with the
COUNT command sometimes count-
ing deleted records and the SET
ESCAPE ON not always working with
the INPUT and READ commands, and
SET CARRY not operating properly
while processing an empty file.

One last problem I encountered (which
was actually the first one I discovered)
was after I installed an invoice tracking
system for a client. I had version 2.3B,
he had version 2.3A. Things worked
just fine on my machine, but the data
base became corrupt after producing
reports on his machine. After spending
a couple of days looking for problems
in my logic, I gave Ashton-Tate a call
and they said that there was a known
problem with the end-of-file marker
being set properly, which would cause
the problem I described to them. They
said my client should send the distribu-
tion disk back and get the new version.

dBASE is a wonderful piece of soft-
ware, especially after working with a
ponderous monster like IBM's IMS
data base on the mainframes. Hope
you feel these notes worthy to share
with your readers. Look forward to
more hints of usage, and especially try-
ing to implement some subroutine calls
from dBASE.

Michael P. Kelly
Design Software
San Francisco, CA

July 10, 1982

Dear Mr. Olfe,

I have enjoyed reading your short ar-
ticles about hints, bugs, etc. of dBASE
II. I would like to share with you a
rather serious bug that I discovered
while using dBASE. It seems dBASE II
can't multiply when the multiplier or
multiplicand are fractions. Enclosed is
a run showing the problem. [Ed. - See
below.]

I discovered this bug while writing a
command module to do simple interest
calculations for a loan (you know, the
one that goes interest equals principle
time rate). Well, I have been playing (?)

b:
B0>
. clear

. store 22052.93 to princ

22052.93
. store 0.0700000 to int
0.0700000

. store int/I2.0 to monthint
0.0058333
. list memory
PRINC (N) 22052.93
INT (N) 0.0700000
MONTHINT (N) 0.0058333
** TOTAL ** 03 VARIABLES USED 00018 BYTES USED
. ? 0.0058333*22052.93

128.641356500

. ? 22052.93*0.0058333
128.641356500

. store princ*monthint * princ to bal
128.642091500

. store monthint * princ to bal
128.642091600

. list memory
PRINC (N) 22052.93
INT (N) 0.0700000

MONTHINT (N) 0.0058333
BAL (N) 128.642091600
** TOTAL ** 04 VARIABLES USED 00024 BYTES USED
. set print off

Listing From Mr. Kelly's Letter
42 Lifelines/The Software Magazine, September 1982

orders dating back to September of last
year for the purchase of the actual Tan-
don manuals. Tandon has a new revi-
sion of this data sheet that does include
more technical information, such as
strapping options, which we are cur-
rently providing. Due to constant up-
dates and revisions, Tandon has not
published an offical technical manual.

We did receive a preliminary manual
from Mr. Jay Tyzzer at Tandon only
after assuring him that we would not
reproduce it. Due to the many changes
in the product, Mr. Tyzzer said the
manual was not accurate and should
not be redistributed. This must be the
same manual he sold to Mr. Zoso for
$25.00. In the preliminary manual,
Tandon lists only question marks for
the part numbers of the official man-
uals.

Mr. Tyzzer's comment that Tandon's
new data sheets will have "...promi-
nent copyright notices so nobody will
be tempted to dupe it..." is an in-
teresting one. Tandon does not make
their manuals readily available and
then they want to discourage those
who sell their product from dissemi-
nating the information to use it. They
will not sell us their manuals or allow
us to copy them as indicated above. We
have sold hundreds of Tandon drives;
one would think that Mr. Tyzzer, only
a half mile away, would see to it that we
have current and complete information
to distribute to our customers. The
people at Tandon could learn a
valuable lesson from William DeLorie
of Qume. When Mr. DeLorie learned
that the Qume OEM manual we were
selling was not current, he sent us a
copy of the current manual as well as a
copy of the service manual and en-
couraged us to reproduce both. Now
every customer who purchases a Qume
drive from Priority One may also pur-
chase the manuals without having to
call the factory for assistance.

Mr. Zoso's second complaint deals with
his friend's purchase of two Mitsubishi
disk drives and their subsequent re-
placement. Contrary to Mr. Zoso's
statements, we did offer to pay the
freight on all defective Mitsubishi
drives. We offered to issue UPS Call
Tags to all customers who needed to
return their drives. The delivery of
these drives from Japan is beyond our
control. We quote delivery in good
faith based on the information the

A Call For Help manufacturer provides for us. In the
case of the Mitsubishi drives, they did
arrive three weeks after their promised
due date in April. We can only apolo-
gize for any inconvenience this delay
may have caused Mr. Zoso's friend.

Mr. Zoso's final comments concerning
the pricing on Qume disk drives were in
error. During the months of February
and March we were able to purchase a
limited number of Qume disk drives at
a reduced cost. These special purchase
drives had a white face plate rather
than the standard black face plate. Our
lower cost was passed on in the form of
special sale pricing to our customers.
At the reduced prices, we quickly sold
out of these drives with the white face
plates. When these drives were gone,
we resumed selling our normal stock of
drives with black face plates at a price
that reflected our normal cost. Con-
trary to Mr. Zoso's opinion, we did not
raise the price $100.00, but rather we
lowered our price $100.00 while we
were able to.

Thank you in advance for printing our
reply to Mr. Zoso's opinions.

Sincerely,
John C. Gunn
Customer Service Manager
Priority One Electronics

July 17, 1982

Dear Sirs,

I am writing a tutorial for computers;
and I need a program that intercepts a
student's typed input to check it for
typographical errors, tells him what his
error is, and tells him to try again. It
should work when he is in PIP, ED, and
CP/M command modes.

Dean Dwyer
1534 Voorhees
Manhattan Beach, CA 90266

A Correction

July 14, 1982

Dear Mr. Bloch,

I recently received my July issue of Life-
lines, and have to report an error on
page 43 concerning the HP 125. At the
end of that page, you state that Hew-
lett-Packard's CP/M-80 allows only 64
directory entries. While this was the
case in the preliminary version of BIOS
which you were using all of our custo-
mer shipped systems allow 128 direc-
tory entries, or extents, per disc. I real-
ize your statements were based on your
experience with the HP 125, and I can
only apologize for the error on our
part.

Sincerely,
Miles Kehoe
GSD On-Line Support
Hewlett-Packard

MicroPro Replies

Sirs:

Your April, 1982 issue contains some
information which needs clarification.

Concerning Mr. Van Natta'a evalua-
tion of SpellStar Version 1.0 (pp.25
thru 27);

The first problem mentioned was that
there existed problems with the inter-
face between SpellStar and Lifeboat's
version (2.25b) of CP/M for the TRS
80 Model II. The situation relates to
SpellStar 1.0 handling of memory-
mapped video boards.

Second, the article says that SpellStar is
slow. The version tested is not as fast as
some others. Also noted is the fact that
work files are left on the disk when not
enough space is available for SpellStar
to sort its files.

(continued next page)
43

A Reply To Zoso
This letter is in response to the Opinion
column written by Mr. Zoso in the July,
1982 issue of LIFELINES. I would like
to take this opportunity to respond to
Mr. Zoso's comments about products
purchased from Priority One Electron-
ics.

Mr. Zoso makes several comments
about the manual he ordered with his
Tandon 8" disk drives. The spec sheet
which he received was the only infor-
mation then available on the 8" Tandon
disk drives. We have open purchase

Lifelines/The Software Magazine, Volume III, Number 4

All three of the above mentioned prob-
lems have been resolved in SpellStar
version 1.2 which is available for ship-
ment. It is as least twice as fast on small
files as version 1.0, and also faster on
larger files. It handles memory-mapped
video boards as they should be, hence,
you don't need to downgrade your
WordStar by re-installing it as a serial
terminal. Version 1.2 deletes its work
files upon both a normal exit, and pre-
mature ones. It also no longer stops
processing after 9500 words.

Next, under the heading of Software
Notes, Page 46: A Patch for WordStar
on the Superbrain. You should note
that users of DOS 3.0 on the Super-
brain only require the suggested
modification if they bought their
WordStar from Lifeboat Associates (Or
their disk has a Lifeboat sticker on it). If

they bought their disk from anyone
else, the patches are already made.
Also, the differences between the three
patches published are three bytes (1 at
address 02ED and two starting at
02F1.). This problem was caused by
Lifeboat downloading a regular 8"
WordStar to Superbrain format and
selling that. Special changes were put
into our version of WordStar on the
Superbrain to allow it to use memory-
mapped video.

For users of MicroPro's version of
WordStar for the Superbrain, here are

the areas which need to be patched for
those who have later than 3.0 DOS.
This is not to imply that the patches
documented will not work for all ver-
sions of WordStar on the Superbrain,
but the above patches seem less fright-
ening for those who have MicroPro's
version.
Sincerely,
Joe Masters
Product Release and Evaluation
Services
Technical Services Department
MicroPro International Corporation

Location For 3.1 DOS
Change to :

For 3.2 DOS
Change to :

02ED 00 00
021F1 18 20
02F2 E7 E7

BASIC/ Z
the ultimate CP/M compiler!

Generates native code (8080/Z-80) for
fast execution - 16 bit versions soon

• Sort verb is unmatched by stand-alones.
2000 elements in two seconds!

• Alpha-numeric labels, variable and
function names of any length

• Chain program segments which share
variables declared common

• Five data types - binary/BCD/string
• BCD floating point math - never a

“round-off” error - precision is program
definable from 6-18 digits

• Full function program editor tests syntax
as you type

• Recursive, multi-line, multi-argument
user defined functions

No royalties - No run-time charges
Dimension arrays dynamically (to an
expression) and selectively erase
Screen oriented editing of console input
at run-time (cursor left/right/start/end,
delete left/right/line, insert/change
mode, and input masking available)
Push/pop subroutine stack
Trace and single-step debugging
Multi-tiered error trapping even handles
BDOS errors
Cursor addressing, reverse and blinking
video, erase and more are supported
from source code level, with virtual
hardware independence

• An extended library of over 200
“key-word” functions

For free brochure System/z, inc
and mini-manual: ”

System/z, inc
PO. Box 11
Richton Pork IL 60471
(312) 481-8085

a trademark of Digital Research

44 Lifelines /The Software Magazine, September 1982

Product Status
Reports

ware modifications, along with upper
and lower case. 40 to 255-column hori-
zontal scrolling and 70 column by 24
line screens are supported.

With the full implementation of Word-
Star, the APPLI-CARD is priced at
$595. It will be available this fall.

Business Software Series
Microcomputer Consultants

The elements of this series include In-
ventory Control for Manufacturers,
Job Cost Control, General Ledger, Ac-
counts Receivable, Accounts Payable,
and Retail /Wholesale Inventory. De-
signed for multi-user situations, rec-
ord-locking allows users to simulta-
neously view but not update the same
record. A record in the process of being
changed may not be interfered with by
a second user.
Digital Research's Access Manager is
utilized for file handling. An index is
maintained for all large data files. Por-
tions of this index are buffered in
memory.

The series requires MP/M-I or -II. Sug-
gested retail prices for individual mod-
ules range from $600 to $995.

C/80 Compiler
The Software Toolworks
This C compiler supports major C lan-
guage features, excepting floats, longs,
and arguments to macros. It includes
data initialization and all C storage
classes. C/80 compiles all C arithmetic
and logical operator and control state-
ments, generating 8080 assembly lan-
guage code for Macro-80, or for the in-
cluded absolute assembler. The run-
time profile facility prints execution
time and frequency for each subrou-
tine.
The suggested retail price is $49.95;
C/80 requires CP/M-80 or HDOS.

COGEN
BYTEK
This ANSI COBOL 74 RM/COBOL
program generator is intended for stan-
dard business applications: file mainte-
nance, inquiries and reports. Modules
create files, screens and programs for
use in business application systems.
The modules are designed for flexibility

in program generation. Overlay and
split screen features are supported.

Reports with optional headers, multi-
ple detail lines, multiple control breaks,
conditional printing, and data selection
from reference files are part of
COGEN. The user can document ap-
plications with hard copies of screen
and report layouts; these layouts can
be updated.

COGEN requires less than 10K of
memory, with versions to run under
MP/M-86, CP/M-80, CP/M-86, and
OASIS. Contact the author for pricing.

footPRINT!
Sterrett Consulting, Inc.

This text formatting program takes
standard ASCII files with preformat-
ting commands as input, producing
output to printer, console, file, and
other devices. Modularly written in
Pascal, it supports chained logical in-
put devices, continuous status display,
interrupt /resume processing, selective
page processing and single sheets or
continuous forms.
Page length and width, margins on four
sides, and heading/foot ing notes
(multi-line) can be controlled by the
user. Right and left block indentations
are allowed, along with automatic line
break and line break override, condi-
tional hyphens and word breaks, phan-
tom spaces, variable line spacing, con-
ditional page breaks and overrides,
automatic widow/orphan line control,
automatic footnote placement and con-
tinuation.

Centering, microjustification (left or
right), broken /solid underscores, bold-
face, sub- and superscript, arabic or
roman page numbering and footnote
numbering are designed to make a
more impressive presentation.

The author states that a single-user
license for this product will be priced at
under $200.

ITOZ/ZTOI
RD Software

These independent source program
processors or translators run on
Z80-based systems. ITOZ accepts a
CP/M-80 file written in Intel 8080 mne-

(continued next page)
45

New

Products
The products described below are
available from their authors, computer
stores, software publishers and distrib-
utors. Information has been derived
from material supplied by the authors,
and Lifelines/ The Software Magazine
can assume no responsibility for its
veracity. Software of interest to our
readers will be tested and reviewed in
depth at a later date.

Advanced Legal Software
Advanced Legal Software

This law office information and man-
agement system includes client billing
and trust accounting. In conformity
with American Bar Association stan-
dards and the Code of Professional Re-
sponsibility, the package was devel-
oped by attorneys and uses legalistic
jargon rather than 'computerese".

Hourly, flat fee and contingency types
of billing are supported, with fourteen
hourly rates for each attorney. Client
accounts may be open, inactive, closed
or deleted. Professional statements can
be produced in eight different user-
defined formats.
The system runs under CP/M-80,
CP/M-86 or MP/M-80.

APPLI-CARD
Personal Computer Products, Inc.

This CP/M-80 product furnishes Apple
II users with the ability to execute
WordStar and fully utilize its features.

It provides 64K of on-card memory
and comes standard with a 4MHZ
Z80A; a 6MHZ Z80B can be ordered
separately. 2K or 8K of EPROM are
permitted on the card and a real time
clock is supported. An expansion inter-
face port is available for added mem-
ory.

The card comes with CP/M-80 or
SB-80 and allows all 96 ASCII charac-
ters to be input or output without hard-

Lifelines/The Software Magazine, Volume III, Number 4

monies and creates Zilog mnemonics
output. ZTOI translates from Zilog
back to Intel. The translated files are
fully formatted, containing all original
comments. Command line options in-
clude conversion of asterisks to semi-
colons as comment delimiters and the
addition of colons as label terminators.
Errors are flagged by console messages
as well as being written into the output
file as comment lines.
Utility programs for each translator
allow the user to add custom pseudo-
ops or macro names to the translators.
The suggested retail price is $40.

LEADtrack
LEADtrack Corporation
LEADtrack is a multipurpose market-
ing tool for tracking trade advertising
programs and inquiries from space ads,
publicity releases and trade shows. It
can also be used for client lists and rec-
ords, sales information and medical
files.
The three essential modules are: pros-
pect /customer data management with
sales territories calculated by zip code,
literature fulfillment support (labels,
personalized letters, sales lead notifica-
tion), six analytic reports for tracking
and tabulating sales leads (by maga-
zine, product, ad campaign, territory).
This third module also can produce
analyses of prospects' purchase status
within a territory.
This CP/M-80 compatible product is
written in BASIC and can be purchased
as a service bureau option, or outright.

MATHLIB
BRIDGE Computer Company
The FORTRAN programs included in
this library perform mathematical, en-
gineering and scientific computations,
like vector and matrix operations, lin-
ear/non-linear equations and regres-
sions, optimized least squares and
eigenvalue/eigenvector problems. Sev-
eral independent documented modules
make up the product, and source code
is provided in machine-readable and
hard copy form.
The suggested retail price is $365.

MCDISPLAY
MasterComputing, Inc.
This software development utility in-
cludes a display development aid with
user interface. The application pro-
grammer defines screen displays using
a large system approach. The displays
are saved as disk files and are used by

the application program through a
series of directives contained in the user
interface. The interface also processes
data entries, handles messages and
prompts, provides error checking, and
converts user entries into string, in-
teger, single or double precision vari-
ables. Message and prompt overlays
are supported.
The system currently operates under
Microsoft BASIC-80 and BASCOM,
but it is designed to be language in-
dependent.
A cursor-addressable terminal is re-
quired, along with CP/M-80. The sug-
gested retail price is $175.

Plotpak
BRIDGE Computer Company
Plotpak is a two-module graphics
package, consisting of a user interface
and a hardware interface. A screen
logical device and a plotter logical
device share commands and execute
graphs simultaneously if both enabled.
The hardware interface communicates
with the plotter logical device.
This product is designed for general
scientific and engineering graphs,
signal processing presentation results,
computer-aided designs, and linear
graphs for reports. It is written in
FORTRAN-80, RATFOR and MAC-
RO-80, with code provided in printed
and machine-readable form.

This plotting library includes drivers
for MicroAngelo 512, ADM + Repro-
graphics, TEK 4010-compatible termi-
nals, HP 7225B table plotter and HP
7470B multipen plotter, Houston In-
struments DMP-4 multipen plotter
and TRS-80 ball pen plotter. The user
may write other drivers if necessary.
CP/M-80 and FORTRAN-80 are re-
quired. The suggested retail price is
$365.
Record Management System
Washington Computer Services

This relational database management
system is written in assembler language
and is designed to perform such record
keeping tasks as inventory control,
mailing lists, accounting functions.
Records can be accessed by alpha or
numeric keys; the maximum file size is
65535 records. Each record may consist
of up to fifty fields and 1021 bytes.
Record layout is dictionary-driven,
and files can be merged or moved when
a record format change is desired.
Included with the system is a form fill
out, record look up, update and data

entry system. A configure program
helps the user customize RMS for his or
her CRT and keyboard. The ASCII file
format means that RMS files can be ac-
cessed via other utilities or from user-
written BASIC or Pascal programs.
Other features are a sort and a report
creation system. The report creation
system allows arbitrarily complex rec-
ord selection and user control of output
format, which can be routed to the
screen, printer or a disk file.
The suggested retail price of RMS is
$395; it runs under CP/M-80 or IBM
PC DOS (requiring 48K).

STRPAK
BRIDGE Computer Company
This collection of 135 subroutines and
functions is written to enhance the
FORTRAN-80 compiler. Directional
I/O, string/character manipulation
routines, and file control procedures
are included. Source code in RATFOR
and MACRO-80 is supplied with
STRPAK.
FORTRAN-80 and CP/M-80 are re-
quired. The suggested retail price is
$275.

XASMZ8
XASM75
Lifeboat Associates
These two new cross-assemblers gener-
ate machine code for the Zilog Z8 mi-
croprocessor and the NEC 7500 micro-
processors respectively, accepting their
standard instruction mnemonics and
syntax.
Input is taken from a CP/M-80 text file,
and output is an object code file, an as-
sembly listing and an alphabetized list-
ing of all symbols defined in the assem-
bly. The object file may be in Intel HEX
format (or Motorola MIKBUG format
for XASM75) or omitted. Listings may
be sent to the list device, console, or
disk file.
The assemblers feature storage defini-
tion instructions, conditional assem-
bly, control of listing format, multiple
source files in an assembly. New mne-
monics may be defined as synonyms
for opcodes and pseudo-ops, minimiz-
ing the need for re-editing existing
source programs.

XBASIC
Xitan Systems

This Z80 interpreter provides MP/M-80
compatibility, includes matrix arith-
metic function, areas and code for the
incorporation of user-supplied devices,

46 Lifelines /The Software Magazine, September 1982

This book is written in a casual yet
highly informative style, and I found it
easy to visualize the author as an indi-
vidual who practices a thoughtful
"here's what you need to know (and
why)" ph i lo sophy . DISCOVER
FORTH gently leads its reader through
such diverse topics as the origin of
FORTH, key attributes that make
FORTH such a powerful language, es-
sential concepts and definitions from
among what initially appears to be a
maze of FORTH terminology, descrip-
tive programming examples, and even
suggestions on getting started doing
your own programming. The book
concludes with six appendices that
consolidate useful reference material
and other detailed information on
FORTH.

The twelve chapter titles reveal the
structured presentation: A Description
of FORTH; The FORTH Dictionary;
The Stack; FORTH Arithmetic; Using
FORTH; Interpreting and Compiling;
Memory Manipula t ions; Mathe-
matical Possibilities; Control Struc-
tures; Input and Output; Programming
FORTH; And So: FORTH.

The six appendices were titled as
follows: Coding Sheet for FORTH
Programming; FORTH-79 Standard
Glossary of Words; ASCII Character
Codes; Suggested Alternatives to the
FORTH Syntax; Error Messages; Some
FORTH Extensions.

Each of the twelve chapters in the
142-page softcover book is relatively
short. Nonetheless, the author quickly
states his intentions, supports his
statements with illustrations and ex-
amples of FORTH coding, and con-
cludes each chapter with a summary of
what should have been learned. Thus,
any interested reader who combines ac-
tual FORTH software programming
experience with regular referral to DIS-
COVER FORTH will undoubtedly
gain more than just a fundamental ap-
preciation for this language.

Perhaps too, the reader will ultimately
come to realize the effort that Mr.
Hogan had to expend to make every-
thing seem so simple after all. Could it
be that the "building block approach"
which the FORTH language is based
upon has also served the author so
well? Read and enjoy!

record-locking, and test and write facil-
ities. Multiple printer use and password
protection of files are also supported.
Other features are a user key-definable
line editor, timeout on input state-
ments, full error trapping, a four level
trace facility, user-selectable precision
of any numeric variable (integer to 14
digits), extended variable names (up to
13 characters), binary coded decimal
arithmetic, and a 24K size in the graph-
ics version. A cross-reference utility is
included with the interpreter.
The graphics version supports Hi-Techs
Simple Image Display Card and has
eleven commands.

This product requires CP/M-80 2.2,
MP/M-II, or CDOS.

New

this update: a toggle to enable output to
be directed to a list device, a string
search command, a block verify com-
mand, and a toggle which when used
with the TRACE command will break
and display branch instructions only.

Bugs

Bugs
ZDT
Version 1.41

Murray Lesser of Yorktown Heights,
N.Y. has informed us that when ZDT is
used and a breakpoint is reached, ZDT
uses the current CPU stack for its own
internal operations, instead of saving
the current stack pointer and using its
own internal stack. This causes some
programs to fail when running under
ZDT.

Books
Versions
Microspell
Version 4.4
This update runs under MSDOS and
corrects a few bugs in the previous ver-
sion: the /D switch was omitted from
the menu; the INVERT utility under
certain conditions searches on only the
currently logged drive for the LEX file
to be inverted. The new version also in-
cludes a revised context printing rou-
tine which reduces the occurrence of
word fragments at either end of a line.

A new feature causes SPELL to search
for double words and allows you to
eliminate the second occurrence. This
feature can be disabled with a switch.

This version requires 48K of memory in
addition to that required by MSDOS.
160K storage per drive recommended.

Books
DISCOVER FORTH:
Learning And Programming
The FORTH Language
By Thom Hogan
OSBORNE/McGraw-Hill,
Berkeley, California

Reviewed by Raymond J. Sonoff

In the introduction to this book the
author states, "This book is an attempt
to put what I've learned about FORTH
into a coherent, organized introduction
that others new to the language will
appreciate...." This reviewer feels that
Mr. Hogan's attempt was successful.

ZDM/ZDMZ Debuggers
Versions 1.4/2.3

Four new commands are included with ' PlD'/ou. kftoUiTriPTT
f=\S &mALL ArS

KA FFRTicir CftM

Lifelines /The Software Magazine, Volume III, Number 4 47

(A Memory Resident Floppy Disk Program cont from p. 12)
philosophy to grow in a manner that permits maximum pub-
lic domain usage and benefit to be derived from their use.

If the reader has a desire to experiment with the BIOS exten-
sion scheme discussed here, I will be happy to share the
complete source code shown here and a text listing file of this
article with anyone that wants it. To obtain a copy just send
an eight-inch single density formatted diskette to me in a disk-
ette mailer with sufficient enclosed return postage and
address label to this address: Michael J. Karas, 2468 Hansen
Court, Simi Valley, California 93065. If you can reach me via
phone at (805) 527-7922 some evening between 7:30 PM and
10:30 PM California time, I can also arrange to send you the
article text and programs via modem at 300 baud with the
standard Ward Christensen MODEM program. Plan for
about one hour of modem time at 300 baud.

Listing 1 - ADD-ON MODULE
Relocator Program

PRL FILE FORMAT RELOCATER FOR BIT MAPPED FILES

THIS SMALL PROGRAM BLOCK MOVES A BIT MAP RELOCATABLE
FILE FROM ADDRESS 0200H ABOVE THIS MODULE UP TO A SPOT
BELOW THE CCP AND THEN JUMPS TO THE BASE OF THE MOVED
CODE. THE DIGITAL RESEARCH RELOCATING ASSEMBLER AND THE
COMPANION LINKER PERMIT THE GENERATION OF THE PRL FILE
FORMAT. LINK WILL PUT THE CODE SIZE WORD IN TO ADDRESS
101 AND 102 . THE CODE SPOT IS INTENDED TO BE 0200H WITH
THE BIT MAP IMMEDIATELY ABOVE ABOVE THE CODE. A ONE IN THE
BIT MAP INDICATES THE LOCATION OF A MOVED BYTE THAT
REQUIRES A RELOCATION ADDRESS OFFSET.

**

START POINT FOR THE BEGINNING OF THE MOVER MODULE

ORG 01 OOH

•GENERAL CP/M BDOS INTERFACE EQUATES.

BDOS EQU 0005H ;FILE MANAGER ENTRANCE LOCATION
CODE$START EQU 0200H ;LINK 80 CODE START POINT FOR ORG 0 F ILE

".START POINT OF MOVER CODE

DB 01H ; INSERT HEX FILE CODE FOR LXI B.XXXX
DS 2 • . INSERT CODE SIZE FROM LINK .PRL FILE

;WITH DDT HERE
LX I H.O ;GET CCP STACK FOR LATER PASSING
DAD SP ;TO RELOCATED PROGRAM
LXI SP , CODE$START ; LET STACK WORK DOWN FROM 0200H
PUSH H ;SAVE CCP POINTER ON OUR STACK

PUSH B ;SAVE A COPY OF CODE SIZE ON STACK

•GET BDOS PAGE ADDRESS BOUNDARY

LXI H.BDOS+2 ;PAGE ADDRESS OF BDOS BASE
MOV A.M ; INTO (A)
SUI 8 ;DECREASE SIZE FOR CCP S IZE

;OF EIGHT PAGES
DCR A ;ONE MORE TIME TO ACCOUNT FOR

; . . PARTIAL PAGE CODE SIZE
SUB B ; SUBTRACT CODE SIZE IN TRUNC INTETGER SIZE

MOV D.A ; (DE) - DESTINATION ADDRESS BASE
MVI E.O
PUSH D ;SAVE LOAD ADDRESS FOR LATER JUMP TO CODE

LXI H, CODES ST ART ; START MOVE POINTER TO (HL)

;LOOP TO MOVE CODE UP IN RAM 1UNDER CCP

MOVLOOP :
MOV A.B ; CHECK BYTE COUNT TO SEE IF ALL MOVED YET
ORA C
JZ MOVDONE ;EXIT LOOP IF DONE

DCX B ; DECREMENT BYTES TO MOVE COUNT
MOV A.M ;GET A BYTE TO MOVE
STAX D ;SAVE AT DESTINATION ADDRESS
INX D ;BUMP SOURCE DESTINATION POINTERS
INX H
JMP MOVLOOP ;GO MOVE MORE BYTES

•CODE MOVED SO SET UP TO SCAN BIT MAP

MOVDONE :
POP D ;GET BACK A COPY OF THE DESTINATION ADDR
POP B ; RESET (BC) TO BYTE COUNT FOR BIT MAP SCAN
PUSH H ;SAVE ADDRESS OF BIT MAP ON TOP OF STACK

MOV H.D ;SET (H) TO RELOCATE PAGE OFFSET
DCR H

FIGURE 1
Memory Layout With an ADD-ON MODULE

Memory
Address

(RAM Map based upon 56K sized CP/M-80 Ver. 2.2)

Functional
Usage Without

ADD ON MODULE

Functional
Usage With

ADD ON MODULE

0000H Warm Boot Jump to
BIOS Vector Table
to reload CCP/BDOS

(JMP 0DA03H)

CCP Restart Jump
through 2nd
modified BIOS
Vector to ADD ON

(JMP 0DA03H)

0005H System Call to BDOS
(JMP 0CC06H)

System Call to BDOS
through ADD-ON MOD

(JMP 0BA06)

0100H User Transient
Program Area (TPA)

User Transient
Program Area (TPA)

BA06H ADD-ON MODULE
image moved here by
loader PRLMOVE.

C400H
to

CC05H

CP/M CCP in standard
location that may be
overlaid by the
transient if needed

Resident image of CCP
that is not overlaid
but stays loaded till
next Cold Boot.

CC06H
to

D9FFH

CP/M BDOS in
standard location.

CP/M BDOS in
standard location.

DAOOH
to

DFFFH

Standard 56K System
BIOS for dual Single
Density Floppy Drives

Standard 56K System
BIOS with swapped
out Jump Vector table
that points to 17 new
entry points in the
ADD-ON MODULE.

LOOP TO SCAN CODE BLOCK JUST MOVED AND TO ADD IN OFFSET OF EXECUTION
PAGE ADDRESS ON ALL BYTES NEEDING RELOCATION.

Z
Z

O
O

N
P

O
O

"
N

>-

i <

X
>

< A,B
C
RELOCDONE
B
A.E
7
SAMEBYTE

;CHECK BIT MAP COUNTER TO SEE IF RELOC DONE

;EXIT IF ALL BYTES CHECKED
; DECREASE BYTE COUNT
; IS (DE) ADDRESS MOD EIGHT BYTES?
; IF SO WE NEED NEXT BIT MAP BYTE
; STILL ON SAME BIT MAP BYTE

GET NEXT BIT MAP BYTE VIA POINTER ON TOP OF STACK

XTHL
MOV A.M
INX H
XTHL
MOV L .A

SAMEBYTE :
MOV A.L
RAL
MOV L .A
JNC NOOFFSET

;SAVE (HL) AND GET CURRENT MAP POINTER
;GET MAP BYTE TO (A)
; INCREASE POINTER FOR NEXT TIME
;PUT POINTER BACK ONTO STACK
;MAP BYTE TO HOLDING REGISTER

; FETCH OUR CURRENT BIT MAP BYTE
; SHIFT BIT MAP BYTE FOR NEXT BIT
;SAVE SHIFTED ONE FOR NEXT PASS
;SKIP OFFSET ADD IF BIT WAS NOT ONE

48 Lifelines/The Software Magazine, September 1982

;GET CODE BYTE AND ADD IN OFFSET IF MAP BIT WAS 1 THE SUPPORTED RAM DISK FORMAT IS AS FOLLOWS:

10 TRACKS MAPPED INTO RAM
8 PHYSICAL SECTORS PER TRACK
256 BYTES/PER SECTOR
SECTORS ACCESSED FROM RAM THROUGH THE STANDARD DEBLOCKING

TECHNIQUES. RAM RESIDENT "HOST SECTORS" MAPPED TO
256 BYTES IN S IZE SO EXPANSION OF THIS PROGRAM TO
BANK SWITCHED MEMORY CAN BE MADE EASILY.

PROGRAM ACCESS TO THE RAM DRIVE IS DONE IN 256 BYTE SECTORS
THAT ARE DEBLOCKED WITHIN A BUFFER CONTAINED INSIDE OF THIS SOFTWARE
PACKAGE. THE INITIAL LOADING OF THIS SOFTWARE SWAPS OUT THE NORMAL
CP/M DISK I /O ENTRY POINTS TO THE BIOS WITH A NEW SET OF ENTRY POINTS
TO THIS MODULE. THIS MODULE THEN CHECKS ALL SELECT DISK ACCESSES FOR

LOGICAL UNIT P : AND WILL AND WILL STEER I /O REQUESTS FOR THIS DRIVE
THROUGH DRIVERS CONTAINED WITHIN THIS PROGRAM. NOTE THAT THIS PROGRAM

STILL DEPENDS UPON THE HOST CP/M SYSTEM BDOS AS THE FILE INTERFACE

MEDIUM.

OPERATION OF THE PROGRAM IS DONE TO MOVE THE MODULE UP TO A WORKSPACE
BELOW THE MEMORY RESIDENT CCP. THE WARM BOOT VECTOR AT THE SYSTEM
WARM BOOT ENTRY POINT IS SWAPPED TO A NEW ENTRY POINT WITHIN THE
RELOCATED I /O MODULE. THE NEW WARMBOOT FUNCTION SIMPLY RE-ENTERS

THE ALREADY PRESENT CCP FOR FURTHER OPERATOR COMMAND PROCESSING.
THE BDOS ENTRY VECTOR IS ALSO MODIFIED TO PERMIT THE DYNAMIC
MODIFICATION OF THE USER PROGRAM AREA SIZE SUCH THAT THE CCP AND

THE RELOCATED I /O MODULE DO NOT GET OVERLAYED BY THE TRANSIENT
PROGRAM AREA'S BUFFER SPACES. THE UTILITY, WHEN LOADED PERFORMS
A CHECK TO VERIFY WHETHER A RELOCATED MODULE IS ALREADY PRESENT

IN MEMORY. THE ALREADY PRESENT CHECK IS DONE VIA A SPECIALLY DEFINED
BDOS CALL THAT REQUESTS THE OPENING OF A F ILE WITH THE SPECIALLY
DEFINED NAME SEQUENCE OF "A , , , , , , , , . , , , " AS THE FILE NAME WHERE (A)

IS A REQUEST NUMBER FOR PRESENCE CHECKING. AS THIS CHARACTER SEQUENCE
IS AN ILLEGAL FILE NAME SEQUENCE, THE CHECK PROGRAM WILL TRAP THE NAME
AND RETURN A ZERO BYTE- IN THE (A) REGISTER IF THE MODULE IS PRESENT.

IF THE ADDRESS BYTE IN THE FIRST BYTE OF THE FCB IS NOT RECOGNIZED,
THEN THE MODULE PASSES THE OPEN FILE REQUEST ON TO THE NEXT HIGHER
LEVEL BDOS CALL. IN ANY CASE THE NON PRESENCE OF A F ILE BY THE NAME
OF "A , , , ” IS VIRTUALLY ASSURED TO CAUSE THE BDOS TO RETURN
A NOT FOUND "OFFH" ERROR CODE IN THE (A) REGISTER. THIS WOULD INDICATE
THE ABSENSE OF THE MODULE BEING CHECKED FOR.

LDAX D ; FETCH THE DESTINATION BYTE
ADD H ;ADD IN OFFSET
STAX D ; STORE BACK AWAY

NOOFFSET:

;LOOP TO OVE CODE UP
; INCREASE THE MOVED CODE BYTE POINTER

IN RAM UNDER CCP

; CHECK BYTE COUNT TO SEE IF ALL MOVED YET

;EXIT LOOP IF DONE

; DECREMENT BYTES TO MOVE COUNT
;GET A BYTE TO MOVE
-.SAVE AT DESTINATION ADDRESS
;BUMP SOURCE DESTINATION POINTERS

;GO MOVE MORE BYTES

CODE MOVED SO SET UP TO SCAN BIT MAP

MOVDONE :
POP
POP
PUSH

;GET BACK A COPY OF THE DESTINATION ADDR
; RESET (BC) TO BYTE COUNT FOR BIT MAP SCAN
;SAVE ADDRESS OF BIT MAP ON TOP OF STACK

;SET (H) TO RELOCATE PAGE OFFSETMOV H,D
DCR H

LOOP TO SCAN CODE BLOCK JUST MOVED AND TO ADD IN OFFSET OF EXECUTION
PAGE ADDRESS ON ALL BYTES NEEDING RELOCATION.

; CHECK BIT MAP COUNTER TO SEE IF RELOC DONE

;EXIT IF ALL BYTES CHECKED
•.DECREASE BYTE COUNT
; IS (DE) ADDRESS MOD EIGHT BYTES?
; IF SO WE NEED NEXT BIT MAP BYTE
; STILL ON SAME BIT MAP BYTE THIS RAM DISK DRIVER PACKAGE

PROGRAM IS COPYRIGHT PROTECTED BY:

COPYRIGHT (C) 1982

MICRO RESOURCES
2468 HANSEN COURT
SIMI VALLEY, CALIFORNIA 93065
(805) 527 -7922

GET NEXT BIT MAP BYTE VIA POINTER ON TOP OF STACK

XTHL ;SAVE (HL) AND GET CURRENT MAP POINTER
MOV A,M ;GET MAP BYTE TO (A)

INX H ; INCREASE POINTER FOR NEXT TIME
XTHL ;PUT POINTER BACK ONTO STACK
MOV L.A ;MAP BYTE TO HOLDING REGISTER

SAMEBYTE:
MOV A , L ; FETCH OUR CURRENT BIT MAP BYTE
RAL ; SHIFT BIT MAP BYTE FOR NEXT BIT
MOV L,A ;SAVE SHIFTED ONE FOR NEXT PASS
JNC NOOFFSET ;SKIP OFFSET ADD IF BIT WAS NOT ONE

; DEFINE TRUE AND FALSE ASSEMBLY PARAMETERS

TRUE EQU -1 ; DEFINE TRUE
FALSE EQU NOT TRUE ; DEFINE FALSE

;GET CODE BYTE AND ADD IN OFFSET IF MAP BIT WAS 1

LDAX D ;FETCH THE DESTINATION BYTE
ADD H ;ADD IN OFFSET

STAX D ; STORE BACK AWAY

NOOFFSET:
INX D - . INCREASE THE MOVED CODE BYTE POINTER
JMP RELOCLOOP ;G0 TO PROCESS MORE BYTES

;DEFINE RAMDISK MODULE SELECT ADDRESS AS SPECIAL VALUE

MODADDR EQU 08AH ; ADDRESS OF THIS MODULE

CP/M BDOS INTERFACE EQUATES

OOOOH ; F IXED BOOT ADDRESS
0005H ; FIXED BDOS ADDRESS
005CH ; DEFAULT FCB LOCATION
0080H ; DEFAULT SYSTEM BUFFER
13 ; RESET DISK SYSTEM

15 ;OPEN FILE
26 ;SET DMA ADDRESS

HERE WHEN THE RELOCATION IS DONE READY TO JUMP TO THE MOVED CODE

REMEMBER THAT (H) HAS PAGE ADDRESS OF MOVED CODE

;GET BIT MAP POINTER OFF STACK

;SET UP EXECUTION ADDRESS
;MAKE (DE) AN EVEN PAGE BOUNDARY ADDRESS
;GET THE SAVED CCP STACK POINTER
; RESET FOR GOING TO MOVED PROGRAM
;GET TRANSFER ADDRESS FROM (DE)
;OFF TO THE MOVED CODE AREA

;ASCI I CHARACTER DEFINITIONS

LF EQU 00AH ;ASCI I LINE FEED CHARACTER
CR EQU OODH ;ASCI I CARRIAGE RETURN CHARACTER

END

4-H-. . .END OF F ILE

; SECTOR DEBLOCKING ALGORITHMS FOR CP/M 2 .2

MACLIB DISKDEF

SMASK MACRO HBLK ; UTILITY MACRO TO COMPUTE SECTOR MASK

; COMPUTE LOG2(HBLK) , RETURN @X AS RESULT
; (2 ** @X - HBLK ON RETURN)

@Y SET HBLK
@X SET 0

; COUNT RIGHT SHIFTS OF @Y UNTIL - 1

REPT 8
IF @Y - 1
EXITM
ENDIF

; IS NOT 1 , SHIFT RIGHT ONE POSITION

@Y SET 0Y SHR 1
@X SET @X + 1

ENDM
ENDM

Listing 2 - RAM DISK ADD-ON MODULE
Demonstration Program

MICRO RESOURCES CP/M RAM DISK ADDON MODULE

THIS PROGRAM IS A SMALL TRANSIENT PROGRAM BASED BIOS SUBSTITUTE
THAT ALLOWS FILE TRANSFER UTILITY BETWEEN THE NORMAL CP/M SYSTEM

DISKS AND AN MEMORY RESIDENT "RAM DISK" . THIS TRANSIENT PROGRAM IS
SETUP FOR ANY VERSION 2 .2 CP/M SYSTEM.

THIS PROGRAM PRESENTS A SMALL DISK DEMONSTRATION VERSION THAT USES
20 K BYTES OF THE HOST SYSTEM TPA TO DEMONSTRATE THE "RAM DISK"

ADDON MODULE TECHNIQUE. THE DEMO VERSION USES IK BYTE ALLOCATION

GROUPS (BLOCKS) AND ALLOWS FOR A TOTAL OF 32 DIRECTORY ENTRIES AS
DEFINED BY THE DISKDEF MACRO CALLS. PLEASE NOTE THAT WHILE THIS MAY
NOT APPEAR TO BE A VERY PRACTICAL IMPLEMENTATION OF A RAM DISK

IT DOES DEMONSTRATE THE DRIVER TECHNIQUES. A GREATLY EXPANDED VERSION
WOULD USE ADDITIONAL BANK SWITCHED RAM BOARDS TO STORE THE DISK DATA
SUCH THAT THE DISK STORAGE AREA COULD EASILY BE EXPANDED TO AS MUCH

AS A MEGABYTE OR MORE.

; BDOS CONSTANTS ON ENTRY TO "WRITE"

WRALL EQU 0 ; WRITE TO ALLOCATED BLOCK
WRDIR EQU 1 ; WRITE TO DIRECTORY
WRUAL EQU 2 ; WRITE TO UNALLOCATED BLOCK

(continued next page)
Lifelines/The Software Magazine, Volume III, Number 4 49

JNZ ZLP

CP/M 2 .2 TO HOST DISK CONSTANTS
INITIALIZE THE RAM BUFFER TO LOOK LIKE FRESH FORMATTED DRIVE

BLKSIZ
HSTSIZ

EQU
EQU

2048
256

;CP/M ALLOCATION SIZE
;HOST DISK SECTOR SIZE

HDSPT EQU 32 ;HOST HARD DISK 256 BYTE SECTORS/TRACK
HSTBLK EQU HSTSIZ /128 ;CP/M SECTS/HOST BUFF

SECMSK EQU HSTBLK-1 ; SECTOR MASK
SMASK HSTBLK ; COMPUTE SECTOR MASK

SECSHF EQU @X ;L0G2(HSTBLK)

; SECTOR SKEW INTERLACE FACTOR

SKEW EQU 00 ; SECTOR SKEW FACTOR

SECSIZ EQU 256 ; NUMBER OF BYTES IN DISK RECORD

CSEG ;SET ORIGIN TO ZERO FOR1 RELOCATABLE
; ASSEMBLY BY RMAC

; SETUP STORAGE FOR THE RAM DISK DRIVE DATA BUFFER BELOW THE RELOCATED
; ADDON MODULE .

RAMBUF EQU $- (10*8*SECSIZ) ;S IZE SET AT 10 TRACKS OF EIGHT 256
; BYTE SECTORS PER TRACK

BUFSIZ EQU $-RAMBUF ;SIZE OF BUFFER FOR INIT CLEAR

•FIRST TIME START UP ENTRY POINT FOR THE RAM DISK AUTO RELOCATING
; I /O MODULE. ENTRY HERE ASSURES PRESENSE OF CP/M 2 .2 .

JMP CHKPRES ;G0 CHECK IF A MODULE OF
;SAME FUNCTION ADDRESS IS PRESENT
; IN SYSTEM

LXI
LXI

B .BUFSIZ
H.RAMBUF

;RAM DRIVE SIZE
; DRIVE BASE ADDRESS

E5LP:
MVI
INX
DCX
MOV
ORA
JNZ

M.0E5H
H
B
A.B
C
E5LP

; STORE AN E5 BYTE
;BUMP POINTER
;DEC BYTE COUNT

LXI
MVI

H.RAMSEL
M.OOH

; DISABLE DRIVE SELECT FOR RAM DISK

CALL
LXI

SHLD

MOVDN
H, BOOTENT
BWBOOT+1

;MOVE DOWN THE BIOS VECTOR TABLE
J SET MOVED DOWN TABLE TO LOCAL BOOT HANDLER

CALL PRTMSG ; PRINT SIGNON MESSAGE

DB
DB
DB
DB

CR,LF , 'Mic ro Resou rces RAM Disk Demons t r a t i on '
CR,LF , 'Add-on Acces s Modu le Ver s ion 110 o f 6 /14 /82 '
CR,LF , 'Copyr igh t (C) 1982 Mi<:ro Resou rces '
CR,LF ,0

;HAVE
;CP/M

THIS UTILITY QUEUE BOTH
DATA BUFFER ADDRESS

BIOS AND THIS DRIVER TO THE SAME

LXI
MVI
CALL

D.DEFBUF
C , STDMA
TOSBDOS

;USE DEFAULT BUFFER
;SET DMA FUNCTION CODE

CCP VIA THE OLD DEFINED REENTRY POINT

H.RAMBUF
H ;ONE PAGE DOWN
L.O6H ;AT CP/M'S BDOS LOOK ALIKE
BDOS+1 ;BASE+6
CCP$ENT, ;GET THE CCP ENTRY POINT
004H ;GET CURRENTLY LOGGED DRIVE

; SUBSTITUTE BDOS ENTRY POINT. EXECUTION ADDRESS IS PLACED HERE
; FROM LOCATION 6 & 7 BY THE START UP MODULE PROVIDED THIS
; MODULE IS DETERMINED TO NOT ALREADY BE IN MEMORY.

TO$BDOS:
JMP $ -$; ENTER ADDRESS AT STARTUP

;NEW WARM BOOT ENTRY LOCATION THAT RESETS THE DISK SYSTEM
;AND TRANSFERS CONTROL BACK TO THE ALREADY PRESENT CCP

BOOTENT :
JMP CCPGO ;NOW GO BACK TO THE CCP

IF THIS SOFTWARE WAS ALREADY
COMMAND.

START UP CHECK ROUTINE TO SEE
LOADED BY A PREVIOUS OPERATOR

CHKPRES:
MVI
LXI
CALL
ORA
JNZ

LXI
MVI
CALL
RET

CHKFCB:
DB
DS
DB

PRESMSG:
DB

;ATTEMPT TO OPEN FILE "A , , , , , , , . , , ,
; POINT AT THE CHECK FCB
;CALL NORMAL BDOS ADDRESS

;NON ZERO RETURN MODULE IS NOT
; . .PRESENT
; POINT TO PRESENT MESSAGE
; PRINT FUNCTION CODE
; PRINT ALREADY PRESENT MESSAGE
; S IMPLE RETURN TO THE CCP

C. OPEN
D, CHKFCB
BDOS
A
NOTSPRES

D, PRESMSG
C,9
BDOS

HERE FROM A BDOS ENTRY TO TRAP FILE OPEN
MODULE PRESENT CHECK.

I /O TO CHECK FOR

BDOS$SCAN:
PUSH D
PUSH B
MOV A,C
CPI OPEN
JNZ CHKFAIL
INX D
LXI H ,10
DAD D
MVI B ,1O

SCAN$LOOP:
A,M

CHKFAIL
H
B
SCANS LOOP
A,M
MODADDR
CHKFAIL
A
B
D

;SAVE CALLERS PARAMETERS

;GET FUNCTION CODE TO A
;SEE IF THIS IS AN OPEN FUNCTION

; POINT TO FCB CHECK BYTE
;SET SCAN COUNTER TO FAKE FILE NAME END

; NUMBER OF TO CHECK FOR

;GET FILE NAME CHARACTER

;PASS ON IF CHECK FAIL
; DECREASE BUFFER POINTER

; CHECKED ALL POSSIBLE CHARS YET
; CHECK IF ADDRESS BYTE IS OURS

; BALE OUT IF NOT
; RETURN ZERO BYTE IF ALL CHECK VALID

; BACK TO PRESENT CHECKER

; PROPER OPEN CHECK FAIL

;OFF TO THE NORMAL BDOS ROUTINE

0 , MODADDR, ' , , , , , , , , , , ' , 0 , 0 , 0 ,0
16
0

CR,LF , 'MICRO RESOURCES RAM Disk A l r eady Ac t ive ' , ' $ '

;HERE IF THIS RELOCATED MODULE IS NOT PRESENT LN MEMORY

NOTSPRES:
POP H ; COMPUTE CCP RE-ENTRY POINT

PUSH H
LXI D .075CH ;NEGATIVE OFFSET TO CCP ENTRY

;WITH NO AUTO LOAD
MOV A,L
SUB E
MOV L .A
MOV A,H
SBB D
MOV H,A
SHLD CCP$ENT ; SAVE THAT ENTRY ADDRESS

LHLD BDOS+1 ;GET PREVIOUS BDOS ADDRESS
SHLD TO$BDOS+1 ;SET TO LOCAL REFERENCE VECTOR

CHKFAIL:
POP
POP
JMP

B
D
TO$BDOS

COMPUTE THE NEW RAM TOP OF TPA TO SET IN A JUMP ONE PAGE BELOW
OF BASE OF THE RAM DISK DRIVE FOR BDOS REFERENCE

H.RAMBUF
H ;ONE PAGE DOWN
L, 06H ;AT CP /M'S BDOS LOOK ALIKE
BDOS+1 ; BASE+6
D,BDOS$SCAN
M. 0C3H ;SET A JUMP AT TPA TOP
H
M,E ;LOW BYTE OF ENTRY POINT
H
M,D ;HIGH BYTE'. OF ENTRY POINT

SUBSTITUTE BIOS VECTOR TABLE. THIS JUMP TABLE VECTORS ALL CP/M
DISK I /O TO THIS TRANSIENT MODULE F IRST. TABLE IS PUT INTO THE
BIOS VECTOR TABLE POSITION BY A CALL TO THE SUBROUTINE "MOVDN"

5
85

 i*
 g

 g
 8

5 8
5 8

5 8
5 ?

 ?
 5

 8
5 8

5 8
5 ?

 S BCBOOT
BOOTENT
BCSTAT
BCIN
BCOUT
BLOUT
BPUN
BRDR
HOME
SELDSK
SETTRK
SETSEC
SETDMA
READ
WRITE
BLSTST
SECTRAN

;TO NORMAL BIOS COLD BOOT ROUTINE
;TO LOCAL WARM BOOT HANDLER
;TO NORMAL BIOS CONSOLE STATUS CHECK
;TO NORMAL BIOS CONSOLE INPUT
;TO NORMAL BIOS CONSOLE OUTPUT
;TO NORMAL BIOS LPT OUTPUT
;TO NORMAL BIOS PUNCH OUTPUT
;TO NORMAL BIOS READER INPUT
;MOVE DISK TO TRACK ZERO
; SELECT DISK DRIVE
;SEEK TO TRACK IN REG A
;SET SECTOR NUMBER
;SET DISK STARTING ADR
;READ SELECTED SECTOR
; WRITE SELECTED SECTOR
;GO RIGHT TO NORMAL BIOS FOR THIS I /O
: SECTOR TRANSLATE

INITIALIZE ALL ITEMS FOR USE IN THIS I /O HANDLER

MVI B .ENDZ-STARTZ ;ZERO DATA AREA IN PARAMETER TABLE
LXI H .STARTZ

XP:
MVI M.OOH ;PUT IN A ZERO PARM BYTE
INX H ; POINT TO NEXT BYTE TO BE ZEROED
DCR B ; CHECK BYTE COUNT TO SEE IF DONE

50 Lifelines/The Software Magazine, September 1982

JNZ
STA

RET

HOME IT
HSTACTLOCTAB :

; LOCAL COPY OF THE ORIGINAL BIOS DISK I /O VECTOR TABLE
; INITIALIZED BY CALLING THE "MOVDN" SUBROUTINE.

BCBOOT:
JMP $ -$;T0 BIOS COLD BOOT ROUTINE

BWBOOT :
JMP $ -$;T0 BIOS WARM BOOT ROUTINE

BCSTAT:
JMP $ -$;T0 BIOS CONSOLE STATUS CHECK

BCIN:
JMP $ -$;T0 BIOS CONSOLE INPUT

BCOUT:
JMP $ -$;T0 BIOS CONSOLE OUTPUT

BLOUT:
JMP $ -$;T0 BIOS LPT OUTPUT

BPUN:
JMP $ -$;T0 BIOS PUNCH OUTPUT

BRDR:
JMP $ -$;T0 BIOS READER INPUT

BHOME:
JMP $ -$;T0 BIOS HOME DISK ROUTINE

BSELDSK:
JMP $ -$;T0 BIOS SELECT DISK ROUTINE

BSETTRK:
JMP $ -$;T0 BIOS SET TRACK ROUTINE

BSETSEC:

JMP $ -$;T0 BIOS SET SECTOR ROUTINE
BSETDMA:

JMP $ -$;T0 BIOS SET DMA ADDRESS ROUTINE
BREAD:

JMP $ -$;T0 BIOS SECTOR READ ROUTINE
BWRITE:

JMP $ -$;T0 BIOS SECTOR WRITE ROUTINE
BLSTST:

JMP $ -$;T0 BIOS LIST STATUS ROUTINE
BSTRAN:

JMP $ -$;T0 BIOS SECTOR TRANSLATE ROUTINE

; SUBROUTINE TO INTERCHANGE BIOS DISK I /O VECTOR TABLE ENTRIES WITH
; THOSE CONTAINED LOCALLY.

SET TRACK NUMBER SPECIFIED BY B&C REGS.

LDA RAMSEL ;SEE IF TRACK FOR US
ORA A
JZ BSETTRK ;TO PROM IF NOT LOCAL

MOV H,B
MOV L , C
SHLD SEKTRK ; TRACK TO EMULATE
RET

TRANSLATE THE SECTOR GIVEN BY B&C REGS.

NO TRANSLATE DONE AT THIS TIME. WE WILL NOT NEED TO TRANSLATE
RAM DISK SECTOR BECAUSE RAM HAS NO ROTATIONAL LATENCY

SECTRAN:
LDA RAMSEL ;SEE IF SECTRAN FOR US
ORA A
JZ BSTRAN ;T0 BIOS IF NOT LOCAL

MOV H,B
MOV L,C
RET ; RETURN FROM SECTRAN

;SET DISK SECTOR NUMBER

SETSEC:
LDA RAMSEL ;SEE IF SECTOR FOR US
ORA A
JZ BSETSEC ;T0 PROM IF NOT LOCAL

MOV A,C ;GET SECTOR NUMBER
STA SEKSEC ; SECTOR TO EMULATE
RET ; RETURN FROM SETSEC

;SET DISK DMA ADDRESS

SETDMA:
PUSH H
MOV H,B ;M0VE B&C TO H&L
MOV L.C
SHLD DMAADR ;PUT AT DMA ADR ADDRESS
POP H
JMP BSETDMA ;TELL BIOS DMA ADDRESS

TABSIZ EQU 17*3 ;TABLE SIZE TO INITIALIZE WITH 17 JMP 'S

BOOT+1 ;GET ORIGINAL WARM BOOT VECTOR POINTER
H ; ADJUST TO BASE OF COLD BOOT VECTOR
H
H
A. TABSIZ ;SET BYTE COUNT TO MOVE
BYTCNT
D.LOCTAB ; POINT TO LOCAL TABLE FILL FROM ABOVE
B. XFRTAB ; POINT TO TABLE TO MOVE UP

A,M ;GET A BIOS TABLE BYTE
D ;PUT IN LOCAL COPY TABLE
B ;GET BYTE OF PATCH TABLE
M,A ;PUT PATCH BYTE INTO BIOS POSITION
H ;MOVE UP TO NEXT BYTE
D
B
BYTCNT ;SEE IF DONE YET
A
BYTCNT
MDLP ; CONTINUE IF NOT DONE YET

READ THE SELECTED CP/M 2 .2 SECTOR

;SEE IF OPERATION FOR US

;GO READ IN BIOS IF NOT FOR US LOCAL

; CLEAR UNALLOCATED COUNT

;READ OPERATION
;MUST READ DATA

; TREAT AS UNALLOCCATED
;TO PERFORM THE READ

0 : LOCAL MOVE BYTE COUNTER

; WRITE THE SELECTED CP/M 2 .2 SECTOR

WRITE:

LDA RAMSEL ; IS THIS WRITE FOR HERE
ORA
JZ

A
BWRITE ;T0 BIOS IF SO

XRA A ;0 TO A REG.
STA READOP ;NOT A READ OPERATION
MOV A.C ; WRITE TYPE IN C
STA
CPI

WRTYPE
WRUAL ; WRITE UNALLOCATED?

JNZ CHKUNA : CHECK FOR UNALLOCATED

**

PARAMETER TABLE FOR TPA REAS I DEN RAM DRIVE

DISKS 1 ;ONE LOGICAL DRIVES SUPPORTED
DISKDEF 0 ,1 ,16 , , 1024 ,20 ,32 ,0 ,0 ;P : RAM DRIVE

MOV A,C ;GET NEW UNIT NUMBER
CPI ' P ' - 041H ; IS THIS OUR DRIVE?
JZ SDSK1 ; IF SO THEN GIVE THEM A PARAMETER POINTER

XRA A ; IF NOT CLEAR THE ZOBEX DRIVE SELECT FLAG
STA RAMSEL
JMP BSELDSK ; IF NOT FOR US THEN LET BIOS HAVE SELECT WRITE TO UNALLOCATED, SET PARAMETERS

A.BLKSIZ/128 ;NEXT UNALLOCATED RECORDS
UNACNT
SEKDSK ;DISK TO SEEK
UNADSK ; UNADSK - SEKDSK
SEKTRK
UNATRK ;UNATRK - SECTRK
SEKSEC
UNASEC ;UNASEC - SEKSEC

HERE IF DRIVE SELECT WAS FOR THIS P IECE OF SOFTWARE

SDSK1 :
SUI
STA

PUSH
MV I
STA
POP

'P ' -041H
SEKDSK

PSW
A.OFFH
RAMSEL
PSW

;SET SEKDSK TO THE HEAD SELECT CODE FOR
; . .RAM DISK DRIVE

;SET THE RAM DRIVE SELECT FLAG

LXI H.DPBASE ;PASS BACK DISK PARAMETER BASE
XRA A ;SET A REG. - 00
RET ; RETURN FROM SELDSK

CHECK FOR WRITE TO UNALLOCATED SECTOR

LDA UNACNT ;ANY UNALLOCATED REMAINING?
ORA A
JZ ALLOC ;SKIP IF NOT

DO DIGITAL RESEARCH BUFFER PURGE IF NEED BE AND BALE OUT
NO RESTORE MEMORY I SRANDObJ ACCESS

A ; UNACNT - UNACNT-1
UNACNT
SEKDSK ;SAME DISK?
H, UNADSK
M ; SEKDSK - UNADSK?
ALLOC ;SKIP IF NOT

LDA RAMSEL ;SEE IF RESTORE FOR US
ORA A
JZ BHOME ;N0 MUST BE FOR BIOS DRIVE

LDA HSTWRT ; CHECK HOST ACTIVE WRITE FLAG
ORA A

(continued next page)
51Lifelines/The Software Magazine, Volume III, Number 4

SEKHST
HSTSEC
RS FLAG ;NEED TO READ?
A
READHST J YES, IF 1
A ;0 TO A REG.
HSTWRT ;NO PENDING WRITE

DISKS ARE THE SAME

LXI H, UNATRK
CALL SEKTRKCMP
JNZ ALLOC

; SEKTRK - UNATRK?
;SKIP IF NOT

;SAME SECTOR?

; SEKSEC - UNASEC?
;SKIP IF NOT

FOR FUTURE REFERENCE

; UNASEC - UNASEC+]
;END OF TRACK?

;USE HARD DISK SPT

;SKIP IF NO OVERFLOW

; UNASEC - 0

; UNATRK - UNATRK+1

TRACKS ARE THE SAME

LDA SEKSEC
LXI H, UNASEC
CMP M
JNZ ALLOC

;COPY DATA TO OR FROM BUFFER

MATCH:
LDA SEKSEC ;MASK BUFFER NUMBER
ANI SECMSK ; LEAST SIGNIF BITS
MOV L , A ; READY TO SHIFT
MVI H,0 ; DOUBLE COUNT

RE PT 7 ; SHIFT LEFT 7
DAD H
ENDM

TO NEXT SECTOR

M
A, M
B
B. HDSPT
B
B
NOOVF"3

= 0

!

HL HAS RELATIVE HOST BUFFER ADDRESS

D, HSTBUF
D ;HL - HOST ADDRESS

;NOW IN DE
DMAADR ;GET/PUT CP/M DATA
C,128 ; LENGTH OF MOVE; CP/M SECTOR SIZE
READOP ; WHICH WAY?
A
RWMOVE ;SKIP IF READ

OVERFLOW TO NEXT TRACK

MVI M,0
LHLD UNATRK
INX H
SHLD UNATRK

WRITE OPERATION, MARK AND SWITCH DIRECTION

MVI A ,1
STA HSTWRT ; HSTWRT - 1
XCHG ; SOURCE/DESTINATION SWAP

;C INITIALLY 128 , DE IS SOURCE, HL IS DESTINATION

RWMOVE:

MATCH FOUND, MARK AS UNNECESSARY READ

NOOVF '
XRA A ;O TO A REG.
STA RSFLAG ; RSFLAG - 0

JMP RWOPER ;TO PERFORM THE WRITE

;NOT AN UNALLOCATED RECORD, REQUIRES PRE-READ

ALLOC:
XRA A ;0 TO A REG.
STA UNACNT ;UNACNT - 0
INR A ;1 TO A REG.
STA RSFLAG ; RSFLAG - 1

; SOURCE CHARACTER

;TO DESTINATION

;LOOP 128 TIMES

COMMON CODE FOR READ AND WRITE FOLLOWS: DATA HAS BEEN MOVED TO/FROM HOST BUFFER

LDA WRTYPE ; WRITE TYPE
CPI WRDIR ;TO DIRECTORY?
LDA ERFLAG ; IN CASE OF ERRORS
RNZ ;NO FURTHER PROCESSING

; ENTER HERE TO PERFORM THE READ/WRITE
;ZERO TO A REG.
;NO ERRORS (YET)
; COMPUTE HOST SECTOR

XRA
STA
LDA

REPT
ORA
RAR
ENDM

A
ERFLAG
SEKSEC

SECSHF
A ; CARRY - 0

; SHIFT RIGHT
CLEAR HOST BUFFER FOR DIRECTORY WRITE

ORA A ; ERRORS?
RNZ ;SKIP IF SO
XRA A ;0 TO A REG.
STA HSTWRT ; BUFFER WRITTEN
CALL WRITEHST
LDA ERFLAG
RET

LET BIOS PRETEND THAT SECTORS ARE NUMBERED FROM 1 TO AVOID
OTHER PROBLEMS IN THE "SEKHST” SECTOR NUMBER VALUE

INR
STA SEKHST ;HOST SECTOR TO SEEK

ACTIVE HOST SECTOR?

LXI H , HSTACT ;HOST ACTIVE FLAG
MOV A,M
MVI M,1 -.ALWAYS BECOMES 1
ORA A ;WAS IT ALREADY?
JZ FILHST ;FILL HOST IF NOT

jUTILITY SUBROUTINE FOR 16 -BIT COMPARE

SEKTRKCMP: ;HL - . UNATRK OR . HSTTRK, COMPARE
J . .WITH SEKTRK

XCHG
LXI H, SEKTRK
LDAX D ;LOW BYTE COMPARE
CMP M ;SAME?
RNZ ; RETURN IF NOT

HOST BUFFER ACTIVE, SAME AS SEEK BUFFER?

LDA SEKDSK
LXI H, HSTDSK ;SAME DISK?
CMP M ; SEKDSK - HSTDSK?
JNZ NOMATCH

;SAME DISK, SAME TRACK?

LXI H, HSTTRK
CALL SEKTRKCMP ; SEKTRK - HSTTRK?
JNZ NOMATCH

;SAME DISK, SAME TRACK, SAME BUFFER?

LDA SEKHST
LXI H, HSTSEC ; SEKHST - HSTSEC?
CMP M
JZ MATCH ;SKIP IF MATCH

•PROPER DISK, BUT NOT CORRECT SECTOR

NOMATCH:
LDA HSTWRT ;HOST WRITTEN?
ORA A
CNZ WRITEHST ; CLEAR HOST BUFF

LOW BYTES EQUAL, TEST HIGH FIRST

INX D
INX H
LDAX D
CMP M ;SETS FLAGS
RET

WRITEHST: ; PERFORMS THE PHYSICAL WRITE
;TO THE HOST DISK

; HSTDSK - HOST DISK NUMBER, HSTTRK - HOST TRACK NUMBER,
; HSTSEC - HOST SECT NUMBER. WRITE "HSTSIZ" BYTES
;FROM HSTBUF AND RETURN ERROR FLAG IN ERFLAG.
; RETURN ERFLAG NON-ZERO IF ERROR

WRTSEC:
; SETUP RAM DISK IOPB
J . .FROM BIOS VARIABLES
;G0 WRITE RAM DISK SECTOR

; RESET ERROR FLAG
; RETURN FROM "WRITEHST”, IF O.K.

CALL

CALL
XRA
STA
RET

RIOPB

RWRITE
A
ERFLAG

READHST :

; HSTDSK - HOST DISK NUMBER,

; PERFORMS THE PHYSICAL READ FROM
; . .THE HOST DISK

HSTTRK - HOST TRACK NUMBER,
; HSTSEC - HOST SECT NUMBER. READ "HSTSIZ" BYTES

MAY HAVE TO FILL THE HOST BUFFER

FILHST:
LDA SEKDSK
STA HSTDSK
LHLD SEKTRK

; INTO HSTBUF AND RETURN ERROR FLAG IN ERFLAG.

READSEC:
CALL RIOPB ;SET RAM DISK IOPB
CALL RREAD ;GO READ SECTORSHLD HSTTRK

52 Lifelines/The Software Magazine, September 1982

SEKTRK:XRA
STA
RET

A
ERFLAG DS 2

1

{SEEK TRACK NUMBER

{SEEK SECTOR NUMBER
SEKSEC:

DS

HSTDSK:
DS

HSTTRK:
1 {HOST DISK NUMBER

DS
HSTSEC:

2 {HOST TRACK NUMBER

DS

SEKHST:

1 {HOST SECTOR NUMBER

DS
HSTACT:

1 {SEEK SHR SECSHF

DS
HSTWRT:

1 {HOST ACTIVE FLAG

DS

UNACNT :

1 {HOST WRITTEN FLAG

DS
UNADSK:

1 ; UNALLOCATED RECORD COUNT

DS
UNATRK:

1 {LAST UNALLOCATED DISK

DS
UNASEC:

2 {LAST UNALLOCATED TRACK

DS

ERFLAG:

I {LAST UNALLOCATED SECTOR

DS
RSFLAG:

1 ; ERROR REPORTING

DS
READOP:

1 {READ SECTOR FLAG

DS
WRTYPE :

1 ;1 IF READ OPERATION

DS
DMAADR:

1 ; WRITE OPERATION TYPE

DS
RAMSEL:

2 {DISK DMA TRANSFER ADDRESS

DS 1 ; LOCAL DISK SELECTED FLAG

ENDZ EQU $ {END OF ZEROED AREA

{HOST DATA BUFFER MEMORY AREA

HSTBUF:
DS

;

HSTSIZ. {HOST BUFFER

;

; SCRATCH RAM

ENDEF

END

AREA FOR BDOS USE

{LET DISKDEF FIXUP BDOS BUFFERS

ROUTINE TO SETUP THE RAM DISK SOFTWARE ADDRESS VALUES VALUES
BASED UPON THE CP/M LOGICAL VALUES

RIOPB:
LX I H, HSTBUF ; POINT TO HOST BUFFER ADDRESS
SHLD XFRPNT
LDA HSTTRK {CONVERT CP/M TRACK AND SECTOR TO
ADD A ; . . 256 BYTE RAM PAGE ADDRESS INDEX
ADD A
ADD A ; TRACK BOUNDARY INDEX
MOV B,A {SAVE TO GET SECTOR
LDA HSTSEC
DCR A {HOST BIOS ABOVE THINKS SECTORS START AT
ADD B ; SECTOR 256 BYTE INDEX TO RAM DISK
MOV D.A
MVI E,OOH
LX1 H.RAMBUF ; POINT TO RAM BUFFER FOR DISK
DAD D ; (HL) IS RAM ADDRESS FOR MOVE
SHLD RAMADDR
RET

; INLINE PRINT OF MESSAGE TILL A ZERO

PRTMSG :
XTHL {SAVE HL, GET MSG POINTER

PRTMLP :
MOV C,M {GET CHARACTER
I NX H ; INCREMENT POINTER TO NEXT CHAR

; . . 0R RETURN ADDRESS
MOV A.C ; CHECK IF ZERO END
ORA A
JZ PMXIT {EXIT IF ZERO

CALL BCOUT {OUTPUT- IT
J MP PRTMLP {GO CHECK/DO NEXT CHAR

PMXIT:
XTHL ; RESTORE HL, RET ADDR
RET {RET PAST MSG

MICRO RESOURCES TPA RESIDENT RAM DRIVE I /O ROUTINES

WRITE ONE 256 BYTE RECORD FROM THE HSTBUF TO THE RAM DRIVE

;+++ . . . END OF FILE

EP
§P

o
o

a RAMADDR ; POINT AT THE RAM DRIVE ADDRESS
;T0 (DE) AS "TO" ADDRESS

XFRPNT ;GET (HL) AS "FROM" ADDRESS
B.SECSIZ ; PHYSICAL HOST SECTOR SIZE

Last Chance
We’re looking forward to hearing from
any of you October subscribers who
haven’t called or written. If your sub-
scription started with the October ’81
issue you should have received a letter
and reader survey from us , urging you to
renew. You can see that Lifelines/The
Software Magazine has given you value
this past year, and we have more goodies
planned. Communications, graphics,
the C language, and new software for the
IBM PC are a few of the subjects to be
covered in the coming months.

Please send your check right away. Or
get out your VISA or MasterCard and
call Lifelines/The Software Magazine
Subscription Dept, at (212) 722-1700.
The address is: 1651 Third Ave., New
York, N.Y. 10028.

(P.S. If you’ve already renewed, but still
received a second or third notice, don’t be
alarmed. Sometimes our letters get
crossed in the mail.)

A.M ;GET A DATA BYTE
D ;PUT AT DESTINATION
H ;BUMP POINTERS
D
B ; DECREMENT BUFFER SIZE COUNTER
A,B
C ; CHECK IF ALL MOVED YET
RWXFR

;DONE WITH READ ALREADY

READ ONE 256 BYTE RECORD FROM THE RAM DRIVE TO THE HOST BUFFER

RREAD:
LHLD XFRPNT ; POINT AT THE HOST BUFFER AS
XCHG {..(DE) AS "TO" ADDRESS
LHLD RAMADDR {GET (HL) REAM ADDRESS AS "FROM" ADDRESS
LXI B.SECSIZ ; BYTES PER SECTOR COUNTER
JMP RWXFR ;G0 DO THE TRANSFER

STORAGE AREA FOR VARIABLES BEGINS HERE. . .

; RELOCATION POINTER STORAGE AREA

CCP$ENT:
DS 2 ; STORE CCP RE-ENTRY POINTER HERE

; TABLE POINTER HERE

;RAM DISK DRIVE ACCESS PARAMETER BLOCK

RAMADDR:
DS 2 ;RAM DRIVE POINTER ADDRESS

XFRPNT:
DS 2 ;READ/WRITE ROUTINE DATA BUFFER POINTER

;THE NEXT SEVERAL BYTES, BETWEEN STARTZ AND
;ENDZ, ARE SET TO ZERO AT MODULE INITIALIZATION

STARTZ EQU $; START OF ZEROED AREA

;HOST DISK BLOCKING/DE-BLOCKING DATA AREA

SEKDSK:
DS 1 ;SEEK DISK NUMBER

Lifelines/The Software Magazine, Volume III, Number 4 53

VERSION LIST August 9, 1982

The listed software is available from the authors, computer stores
S Standard Version
P Processor. Products marked Z80

distributors, and publishers. Except in the cases noted, all software work on Z80 only; those designated
requires CP/M-80, SB-80, or compatible operating systems. 8080 work on Z80 also.

MR Memory Required. This, where ap-
plicable, refers to the size of the
CP/M-80 required. Starred (*) entries

New Products and new versions are listed in boldface. refer to the Transient Program Area

Product s P
8080

MR required; it varies with the RAM
available in the computer.

ACCESS-80
Accounts Payable/Cybernetics

1.0 54K
Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX

Accounts Payable/MC 1.0 8080 56K For CP/M-80 2.2
Accounts Payable /Structured Sys 1.3B 8080 45K* w/It Works run time pkg.
Accounts Payable /Osborne /McGraw-Hill 2.1 8080 48K Needs CBASIC2
Accounts Payable/Peachtree 07-13-80 48K Needs BASIC-80 4.51
Accounting Plus
Accounts Receivable /Cybernetics

8080 64K
Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX

Accounts Receivable/MC 1.0 8080 56K CP/M-80 2.2
Accounts Receivable / Osborne /McGraw-Hill 2.1 8080 48K Needs CBASIC2
Accounts Receivable /Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
Accounts Receivable /Structured Sys 1.4C 8080 49K* w/It Works run time pkg.
Address Management System 1.0 8080 Requires 2 drives
ALGOL 60 4.8C 8080 24K Not for rebuilt Osborne
ANALYST 2.0 8080 52K Needs CBASIC2,QSORT /ULTRASORT
APL/V80 3.2 Z80 27K* Needs APL terminal
Apartment Management (Cornwall) 1.0 Z80 48K* Needs CBASIC2
ASCOM 2.02 8080
ASCOM/86 2.01 8086 Specify operating system: IBMPC/CPM-86/MS-DOS
ASM/XITAN 3.11 Z80
Automated Patient History 1.2 8080 48K
BASIC Compiler 5.30a 8080 48K
BASIC-80 Interpreter 5.21 8080 36K* w/Vers. 4.51,5.21
BASIC Utility Disk 2.0a 8080 20K*
BaZic II 03/03 Z80 32K
Benchmark Word Processor 2.2 40K* Give Name & Model #'s of the video terminal
Benchmark Mail List 1.1 40K* Give Name & Model #'s of the video terminal
BOSS Financial Accounting System 1.08 8080 48K Needs 2/3- drives w/min 200k each, & 132-col. printer
BOSS Demo 1.08 8080 44K*
BSTAM Communication System 4.6 8080 16K*
BDS C Compiler 1.46c 8080 46K* w/'C' book
Whitesmiths' C Compiler 2.1 8080 56K*
BSTMS 1.2 8080 24K
BUG/uBUG Debuggers 3.3 Z80 24K*
C/80 C Compiler 2.0 For HDOS also
CBASIC2 Compiler 2.08 8080 24K* w/CRUN(2,204P, & 238)
CBS Applications Builder
CIS COBOL Compiler

1.33
4.4,1

8080
8080

48K
43K*

Needs no support language

CIS COBOL Compact 3.46 8080 26K*
FORMS 1 CIS COBOL Form Generator 1.06 8080
FORMS 2 CIS COBOL Form Generator
Interface for Mits Q70 Printer

1.1,6a 8080 43K*
CP/M-80 1.41 or 2.XX

COBOL-80 Compiler 4.6 8080 48K
COBOL-80 PLUS M/SORT 4.6 8080 48K
CONDOR II 2.06 8080 42K*
CREAM (Real Estate Acct ng) 2.3 8080 64K CBASIC needed
Crosstalk 1.4 Z80
DATASTAR Information Manager 1.101 8080 34K*
Datebook-II 2.04 8080 52K Needs 80x24 terminal, N/A for CDOS, CP/M-80 1.4, MP/M-80
dBASE-II 2.3B 8080 42K* Includes "Zip"
dBASE-II Demo 2.3B 8080 42K*
Dental Management System 8000 8.7A 8080 48K Needs CBASIC
Dental Management System 9000 & Demo
DESPOOL Print Spooler

2.05
2.1A

8080
8080

48K
19K

Needs CBASIC

DISILOG Z80 Disassembler 4.0 Z80 Zilog mnemonics
DISTEL Z80/8080 Disassembler 4.0 8080 Intel mnemonics,TDL extensions
Documate/Plus 1.4 8080 36K*
Documate/Plus/Demo 1.5 8080 36K*
EDIT Text Editor 2.06 Z80 24K*
EDIT-80 Text Editor 2.02 8080 20K*
EM 80/86 1.00 8086 Specify operating system: IBM PC/CPM-86/MS-DOS
Emulator-86 1.0 8086 Runs CP/M-86 programs on MS-DOS, PC DOS
FABS-I 2.7 8080 32K
FABS II 4.15 8080 48K
FILETRAN 1.20 32K 1-way TRS-80 Mod I,TRSDOS to Mod I CP/M-80
FILETRAN 1.4 32K Needs TRSDOS. 2-way TRS-80 Mod I,TRSDOS

& Mod I CP/M-80
FILETRAN 1.5 32K 1-way TRS-80 Mod II,TRSDOS to Mod II CP/M-80
FinalWord 1.0 8080 56K Runs under CP/M-80, CP/M-86 or IBM PC DOS
Financial Modeling System 2.0 48K
Formula w/General Accounting System 1.01
FORTH (Timin) 3.5 8080 28K
FORTRAN-80 Compiler 3.44 8080 32K*
FPL 56K Vers. 2.6 8080 56K
FPL 48K Vers. 2.6 8080 48K
General Ledger 9000 & Demo 1.06 Needs CBASIC
General Ledger /Cybernetics Needs RM/COBOL. Runs w/CP/M-80, OASIS, UNIX
General Ledger /MC 1.0 8080 56K Needs CP/M-80 2.2 or MP/M-80

Lifelines/The Software Magazine, September 198254

VERSION LIST
Product s P MR
General Ledger/Osborne/McGraw-Hill 2.4 8080 48K Needs CBASIC2
General Ledger /Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
General Ledger/Structured Sys 1.4C 8080 45K* w/It Works Package
GLECTOR Accounting System 2.02 8080 48K* Use W/CBASIC2, SELECTOR III
GLECTOR IV Accounting System 1.0 8080 Needs SELECTOR IV
GrafTalk 1.0 48K* Requires 180Kb/drive. Available for certain Terminals

Printers, & Plotters. N/A CDOS.
HDBS 1.05A + 52K
High Yield 8080 38K
HOE 2.1 8080 48K
IBM/CPM 1.1 8080 CP/M 1.4 only
Insurance Agency System 9000 & Demo 1.10 8080 Needs CBASIC
Integrated Acctg Sys/Gen'l Ledger 8080 48K Needed for 3 pkgs, below
Integrated Acctg Sys /Accts Pyble 8080 48K
Integrated Acctg Sys/Accts Rcvble 8080 48K
Integrated Acctg Sys/Payroll 8080 48K
Interchange Z80 32K
Inventory /MicroConsultants 5.3 8080 56K Needs CP/M-80 2.2
Inventory /Peachtree 07-13-80 8080 48K Needs BASIC-80 4.51
Inventory/Structured Sys 1.0C 8080 48K* w/It Works Package
ITOZ/ZTOI 1.0 Z80 For 8 " IBM, Micropolis, N'Star, Apple
JANUS 1.4.3 8080 Also runs w/8086
Job Cost Control System/MC 1.0 8080 56K Requires CP/M-80 2.2
JRT Pascal System 1.4 8080 50K*
Legal Time Acctg Series 9000 & Demo 1.07 8080 Needs CBASIC
LETTERIGHT Text Editor 1.1B 8080 48K*
LINKER Z80
LP-DISK 1.0 8080 48K Also for TRS-80 I /III
MAC 2.0A 8080 20K*
MACRO-80 Macro Assembler Package 3.43 8080

Needs CBASIC, 2.06 or later & 180K/driveMAG/basel (LMS) 3.0 8080 56K
MAG/base2 (IMS) 3.0 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
MAG/base3 (ADS) 3.0 8080 56K Needs CBASIC, 2.06 or later & 180K/drive
Magic Typewriter 3 Z80 48K
Magic Wand 1.11 8080 28K*
MAG/sam-E3 3.0 8080 32K Specify: CBASIC or BASIC-80
MAGSORT-C 1.0 12K* For CBASIC
MAGSORT-M 1.0 12K* For MBASIC
MAGSORT-R 1.0 12K* For Compilers — BASCOM, FORTRAN-80, PL/I-tfO
MAILING ADDRESS Mail List System 07-13-80 8080 48K
MailMerge 3.0 8080 44K*
Market Time 8080 34K
Master Tax 1.0-80 8080 48K
Matchmaker 8080 32K
Math ★ 3.043 8080 Math add-on to WordStar
MDBS 1.05A + 44K*
MDBS-DRS 1.02 + 48K*
MDBS-QRS 1.0 + 52K
MDBS-RTL 1.0 + 52K
Medical Management System 8000 8.7a 8080 Needs CBASIC
Medical Management System 9000 2.05 8080 Needs CBASIC
Medical Management System 9000 Demo 2.03 8080 Needs CBASIC
Microcosm Z80 CP/M-80 2.X or MP/M-80
MicroSEED B.10G 8080 48K
Microspell 4.3 8080/8086 48K For MS-DOS also
Microspell Demo 1.0 8080 For Dealers Only
Microstat 2.09 8080 48K Needs baZic 03/03 or BASIC-80, 5.03 or later
Microstat for Apple 2.0 Z80 48K*
Mince 2.6 8080 56K
Mince Demo 2.6 8080 48K
Mini-Warehouse Mngmt. Sys. 5.5 8080 48K Needs CBASIC
Money Maestro
MP/M-I 1.1

8080 48K CP/M-80 1.4 or 2.2

MP/M-II 2.0 8080 48K 32K RAM needed
Mr. EDit 2.0 8080 24K Needs 24K TPA, 12 x 64 column terminal
MSORT 1.01 8080 48K
MuLISP-80/MuSTAR Compiler 2.12 8080 24K
MuSIMP / MuMATH Package 2.12 8080 48K muMATH-80
NAD Mail List System 3.0D 8080 48K
Nevada COBOL 2.1 8080 32K
Order Entry w/Inventory/Cybernetics
Panel 3.03

Z80
44K

Needs RM/COBOL

PAS-3 Medical 1.79 8080 56K Needs 132-coL printer & CBASIC
PAS-3 Dental 1.66 8080 56K Needs 132-coL printer & CBASIC
PASM Assembler 1.02 Z80
Pascal /M 4.02 8080 56K CP/M 2.x only
PASCAL/MT Compiler 3.2 8080 32K
PASCAL/MT+ w/SPP 5.5 8080 52K Needs 165K /drive
PASCAL/Z Compiler 4.0 Z80 56K
Payroll w/Cost Acct./Osborne/McGraw-Hill2.2 8080 48K Needs CBASIC2
Payroll /Peachtree 07-13-81 8080 48K Needs BASIC-80 4.51
Payroll /Structured Sys 1.0E 8080 60K w/It Works run time pkg.
PEARL SD 3.01 8080 56K W/CBASIC2, ULTRASORT II
PLAN80 Financial Package (Z80/8080) 2.3 8080 56K Specify Z80/8080
PLAN80 Demo 1.2
PL/I-80 1.3 8080 48K
PLINK I Linking Loader 3.28 Z80 24K* (continued next page)
Lifelines/The Software Magazine, Volume III, Number 4 55

VERSION LIST
Product s P MR
PLINK-II Linking Loader 1.14 Z80 24K*
PMATE 3.02 8080 24K*
PMATE-PC 1.05 8086 For the IBM PC
POSTMASTER Mail List System 3.5 8080 48K
Professional Time Acctg 3.11a 8080 48K Needs CBASIC2
Programmer's Apprentice 1.2 8080 56K Needs BASCOM 5.3, 2-251 Kb /drive
Property Management Program (AMC) 4.2 Z80 48K Needs CBASIC 2.07 + , CP/M-80 2.0 +
Property Management System 07-13-80 8080 Needs BASIC-80 4.51
PSORT 1.4 8080 N/A-Durango
QSORT Sort Program 2.0 8080 48K
Quic-N-Easi 1.4 Z80 48K Also runs on TRS-80 Mod III
Real Estate Acquisition Programs 2.1 8080 56K Needs CBASIC
Remote 3.01 Z80
Residential Prop. Mngemt. Sys. 1.0 Z80 48K
RAID 5.0.2 8080 28K
RAID w/FPP 5.0.2 8080
RECLAIM Disk Verification Program 2.1 8080
Sales Pro 5.0 8080
SBASIC 5.4a 8080
Scribble 1.3 8080
SELECTOR-III-C2 Data Manager 3.24 8080 48K Needs CBASIC
SELECTOR-IV 2.17 8080 52K Needs CBASIC
SELECTOR-V 5.0 8080 48K
Shortax 1.2 Z80 48K TRSDOS,MDOS too, needs BASIC-80 5.0
SID Symbolic Debugger 1.4 8080 N/A-Superbr'n
Spellguard 2.0 8080 48K Needs Word Processing Program
STATPAK 2.1 8080 Needs BASIC-80 4.2 or above
STIFF UPPER LISP 2.8 8080
STRING BIT FORTRAN Routines 1.02 8080
STRING /80 bit FORTRAN Routines 1.22 8080
STRING /80 bit Source 1.22 8080
SUPERSORT I Sort Package 1.6 8080 Max. record = 4096 bytes
SELECT 8080 40K
T/MAKER II 2.6 8080 48K Avail . for CDOS
T/MAKER II DEMO 2.4 8080 48K
TEX Text Formatter 2.1 8080 36K
TEXTWRITER-III 3.6 8080 32K
TIM-III 3.12 8080 32K Needs 2 240 Kb /drives
TIM-III 3.11 8086 For the IBM PC
TINY C Interpreter 800102C 8080
TINY C-II Compiler 800201 8080
Torricelli Author 1.04d Z80/8085 48K 24x80 CRT, 2-100Kb/drive
TRS-80 Customization Disk 1.3C 8080
ULTRASORT II 4.1C 8080 48K
UT-86 1.00 8086 Specify operating system: IBM PC/CPM-86/MS-DOS
Lifeboat Unlock 1.3 8080 Use w/BASIC-80 5.2
VISAM 2.3p 8080 40K*
Wiremaster 4.03 Z80 44K Needs 180K /drive
Wordindex 3.0 8080 48K Needs WordStar
WordMaster 1.07A 8080 40K
WordStar 3.0 8080 48K*
WordStar French 2.26
WordStar IBM PC 3.02M 8086
WordStar Customization Notes 3.0 8080
XASM-05 Cross Assembler 1.05 8080 24K
XASM-09 Cross Assembler 1.07 8080 24K
XASM-51 Cross Assembler 1.09 8080 24K
XASM-75 1.0 8080 24K
XASM-F8 Cross Assembler 1.04 8080 24K
XASM-400 Cross Assembler 1.03 8080 24K
XASM-18 Cross Assembler 1.41 8080 24K
XASM-48 Cross Assembler 1.62 8080 24K
XASM-65 Cross Assembler 1.97 8080 24K
XASM-68 Cross Assembler 2.00 8080 24K
XASM-Z8 1.0 8080 24K
XYBASIC Extended Interpreter 2.11 8080
XYBASIC Extended Disk Interpreter 2.11 8080 With EDIT features
XYBASIC Extended Compiler 2.0 8080 Requires the XYBASIC w/EDIT features to create SOURCE
XYBASIC Extended Romable 2.1 8080
XYBASIC Integer Interpreter 1.7 8080
XYBASIC Integer Compiler 2.0 8080
XYBASIC Integer Romable 1.7 8080
ZAP-80 1.4 8080 24K Needs 50K/drive
Z80 Development Package 3.5 Z80 N/A-Magnolia,Superbr'n, mod. CP/M-80
ZDM/ZDMZ Debugger 1.4/2.3 Z80 For N'Star, Apple, IBM 8", Micropolis Mod II
ZDT Z80 Debugger 1.41 Z80 N / A-Superbr'n , mod .CP /M-80
ZSID Z80 Debugger 1.4A Z80 N/A-Superbr'n , mod .CP /M-80

+ These products are available in Z80 or 8080, in the following host language:
BASCOM, COBOL-80, FORTRAN-80, PASCAL/M, PASCAL/Z, CIS-
COBOL, CBASIC, PL/I-80, BASIC-80 4.51, and BASIC-80 5.xx.

56 Lifelines/The Software Magazine, September 1982

BOY IS THIS
COSTING YOU.

records and entire databases
with a few keystrokes, with
accuracy to 10 places.

Change your data or your
entire database structure
without re-entering all
your data.

And after you're finished,
you can protect all that
elegant code with our run-
time compiler.

Expand your clientbase
with dBASE IL

It’s really quite basic: time is
money.

And BASIC takes a lot more
time and costs a lot more
money than it should every
time you write a new business
software package.

Especially when you
could speed things up with
dBASE II.

dBASE II is a complete
applications
development package.

Users tell us they’ve cut the amount of code they
write by up to 80% with dBASE II.

Because dBASE II is the high performance relational
database management system for micros.

Database and file handling operations are done
automatically, so you don’t get involved with sets, lists,
pointers, or even opening and closing of files.

Instead, you write your code in concepts.
And solve your customers’ problems faster and for

a lot less than with BASIC (or FORTRAN, COBOL
or PL/I).

dBASE II uses English-like commands.
dBASE II uses a structured language to put you in

full control of your data handling operations.
It has screen handling facilities for setting up input

and output forms.
It has a built-in query facility, including multi-

key and sub-field searches, so you can DISPLAY
some or all of the data for any conditions you want
to apply.

You can UPDATE, MODIFY and REPLACE entire
databases or individual characters.

CREATE new databases in minutes, or JOIN data-
bases that already exist.

APPEND new data almost instantly, whether the
file has 10 records or tens of thousands.

SORT the data on as many keys as you want. Or
INDEX it instead, then FIND whatever you’re looking
for in seconds, even using floppies.

Organize months worth of data in minutes with the
built-in REPORT. Or control every row and column
on your CRT and your printer, to format input and
output exactly the way you want it.

You can do automatic calculations on fields,

Also available from Lifeboat Associates.

With dBASE II, you'll write programs a lot
faster and a lot more efficiently. You’ll be able to
write more programs for more clients. Even take
on the smaller jobs that were out of the economic
question before. Those nice little foot-in-the-data-
base assignments that grow into bigger and better
bottom lines.

The price of dBASE II is $700 but you can try it
free for 30 days.

Call for our Dealer Plan and OEM run-time package
prices, then take us up on our money-back guarantee.
Send us your check and we'll send you a copy of
dBASE II that you can exercise on your CP/M®
system any way you want for 30 days.

Then send dBASE II back and we’ll return all of your
money, no questions asked.

During that 30 days, you can find out exactly how
much dBASE II can save you,
and how much more it lets
you do.

But it’s only fair to warn
you: business programmers
don't go back to BASIC’s.

Ashton-Tate, 9929 Jefferson,
Los Angeles, CA 90230.
(213) 204-5570.

Ashton-late
©Ashton-Tate N81

&CP/M is a registered trademark of Digital Research.

he S
oftw

are M
agazine™

ew
 Y

ork 10028

Second C
lass Postage

At N
ew

 York, N
.Y.

%

